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Abstract
Pedestrian detection is a canonical problem in computer vision. Motivated by the observation that the major bottleneck of
pedestrian detection lies on the different scales of pedestrian instances in images, our effort is focused on improving the detection
rate, especially for small-sized pedestrians who are relatively far from the camera. In this paper, we introduce a novel context-
aware pedestrian detection method by developing the Deconvolution Integrated Faster R-CNN (DIF R-CNN), in which we
integrate a deconvolutional module to bring additional context information which is helpful to improve the detection accuracy for
small-sized pedestrian instances. Furthermore, the state-of-the-art CNN-based model (Inception-ResNet) is exploited to provide a
rich and discriminative hierarchy of feature representations. With these enhancements, a new synthetic feature map can be
generated with a higher resolution and more semantic information. Additionally, atrous convolution is adopted to enlarge the
receptive field of the synthetic feature map. Extensive evaluations on two challenging pedestrian detection datasets demonstrate
the effectiveness of the proposed DIF R-CNN. Our new approach performs 12.29% better for detecting small-sized pedestrians
(those below 50 pixels in bounding-box height) and 6.87% better for detecting all case pedestrians of the Caltech benchmark than
the state-of-the-art method. For aerial-view small-sized pedestrian detection, our method achieve 8.9% better performance when
compared to the baseline method on the Okutama human-action dataset.

Keywords Computer vision . Pedestrian detection . Deep learning . Neural network . Deconvolution . Featuremap

1 Introduction

Pedestrian detection [1–6] has wide application in video
surveillance, intelligent vehicles, robotics, and smart drones
monitoring systems. Although steady improvement over the
last decade has been made, accurate detection of the pres-
ence of pedestrians who are relatively far from the camera
remains a challenge. State-of-the-art detectors typically
work reasonably well with large-sized pedestrians, but they
usually fail to detect small-sized (i.e., far-scaled) ones.
Recognizing objects at vastly different scales is a

fundamental challenge in computer vision. For a pedestrian
of interest, captured features are effective only at a certain
scale of the corresponding receptive field, especially in
complex scenes that contain pedestrians of different scales.
A fixed receptive field cannot cover the multiple scales at
which objects appear in natural scenes. Additionally, it has
been observed that far-scale instances often result in pedes-
trians with obscure appearances and blurred boundaries, as
shown in Fig. 1a. This distortion makes it difficult to dis-
tinguish them from background clutters and other over-
lapped instances. Large pedestrians can provide rich infor-
mation for pedestrian detection, while smaller instances of
pedestrians cannot be easily recognized. Figure 1a shows
an example image from the Caltech benchmark [7]. One
pedestrian in the red box has a large scale and four other
pedestrians in green boxes are at a small scale. Figure 1b
shows five corresponding feature maps. The scale distribu-
tion of pedestrian heights in the Caltech training set is
illuminated in Fig. 1c. One can observe that small-sized
instances indeed dominate the distribution. This suggests
that effective detection of small instances of pedestrians is
essential to improve the overall detection accuracy.
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Multiple-scale detection problem are often addressed by
combining feature maps as the representations of multiple
layers in a neural network. SA-Fast RCNN [6] used a
divide-and-conquer strategy based on Fast R-CNN, in which
multiple built-in subnetworks are designed to adaptively de-
tect pedestrians of different scales. Similarly, MS-CNN [4]
worked with multiple layers to match objects of different
scales. Another strategy, adopted by [8, 9], generated region
proposals based on a single feature map using different an-
chors with different scales and aspect ratios that correspond to
different receptive fields. This strategy avoids the repeated
computation of feature maps and tends to be more efficient.
Recent works such as Faster-RCNN [9] address the issue with
a multi-scale region proposal network (RPN), which achieves
excellent object detection performance.

A number of recent approaches have improved the feature
extraction of small objects by using additional context infor-
mation and increasing the spatial resolution of feature maps.
DSSD [10] used deconvolution layers in combination with
existing multiple layers to reflect the large-scale context.
MS-CNN [4] applied deconvolution on shallow layers to in-
crease the feature map resolution before using the layers to
extract region proposals and pool features. Recently, Long
et al. [11] introduced the Fully Convolution Network (FCN),
which demonstrated impressive performance in semantic seg-
mentation [11, 12], and object detection [13]. In [11], the
authors combined coarse high-layer information with fine
low-layer information for semantic segmentation.
Additionally, the atrous convolution represent a powerful
and convenient tool to effectively enlarge the field of view
of filters and incorporate larger context without increasing
the number of parameters or the amount of computations. It
amounts to inserting holes (Btrous^ in French) between non-
zero filter taps. This technique has a long history in signal
processing. It was originally developed for efficient computa-
tion of the undecimated wavelet transform in a scheme re-
ferred to as Balgorithm a trous^ [14]. It has been used as an
upsampling filter in DeepLab [13] for image segmentation

tasks and shows good performance. However, these kind of
technology such as deconvolution and atrous convolution are
less explored in pedestrian detection area. In our paper, we
will explain how to integrate these techniques to a deep neural
network architecture carrying more context information to
solve the small-sized pedestrian detection problem.

Motivated by the above ideas, a novel effective pedestrian
detection framework based on the Faster R-CNN [9] pipeline
is introduced; which named as Deconvolution Integrated
Faster R-CNN (DIF R-CNN). This framework can achieve
state-of-the-art performance. Our work possesses the follow-
ing five major contributions:

First, a novel pedestrian detection framework is proposed
by adding the deconvolutional module to the traditional
Faster R-CNN network. The deconvolutional module can
bring in more semantic context information to enhance
the feature map, thereby improving the detection
performance.
Second, we propose using a reduced network model, in
which we adopt the prior layer as the initial feature map
with a relatively large spatial resolution, instead of using
the last layer as the output feature map. In addition, prop-
er adjustment of the network has been made to avoid
downsampling. Both tricks help retain more detailed in-
formation for small-sized pedestrians.
Third, a synthetic feature map that combines the initial
feature map and the deconvolution layer with semantic
information is proposed, instead of using multi-layer fea-
ture map based method, such as MS-CNN [4], in which
low-level layers have less semantic information regarding
small instances.
Fourth, we propose applying atrous convolution on the
synthetic feature map. The synthetic feature map captures
a rather smaller receptive field. To compensate for this,
the atrous convolution can enlarge the receptive field and
inject detailed context information. Larger receptive
fields help the detection of large-sized instances and

Fig. 1 a An example image from the Caltech benchmark [7]. A typical
input image usually contains multiple pedestrian instances of different
scales. b The corresponding feature maps of different scale instances. c

Scale distribution of pedestrian heights in the Caltech training set. One
can observe that small-sized (i.e. short) instances dominate the
distribution
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detailed context information helps the detection of small-
sized instances of pedestrians. Therefore, application of
atrous convolution can improve the detection accuracy of
multi-scale object detection.
Finally, our approach is demonstrated empirically to
achieve superior performance on well-known bench-
marks. For example, it noticeably improves 12.29% for
detecting far-scale pedestrian (those below 50 pixels in
bounding-box height) and 6.87% for detecting all case
pedestrian of the Caltech benchmark when compared to
the state-of-the-art method.

The remainder of this paper is organized as follows.
Section 2 introduces works related to deep learning and
multi-scale pedestrian detection. Section 3 describes the pro-
posed context-aware deep neural network (DIF R-CNN) in
detail. Experimental results and analysis are presented in
Section 4. Finally, conclusions and future works are summa-
rized in Section 5.

2 Related works

Convolutional neural networks (CNNs) have recently been
successfully applied in generic object recognition [9, 10,
12]. CNN-based models such as AlexNet [15], VGG [16],
GoogleNet [17], InceptionNet [18], and ResNet [19] have also
been developed. With the rise of deep learning methods, some
recent works [2, 8, 20] have shown significant progress in
pedestrian detection. Pierre et al. [8] proposed an unsuper-
vised method based on convolutional sparse coding to pre-
train the filters at each stage. F-DNN + SS [2] used a deriva-
tion of the Faster R-CNN, which adopted multiple parallel
classifiers with soft-rejection-based network fusion. Zhang
et al. proposed a model, referred to as RPN + BF [20], in
which Faster R-CNN was applied successfully to pedestrian
detection for two reasons: to improve the resolution of the
feature maps and mine hard-negative examples. To improve
the detection performance, most of these methods adopted
pre-trained models from ImageNet, which have been success-
fully used for classification. However, the pre-trained models
are always very deep in the sense that they have multiple
pooling layers. These models are good for coarse-grained
classification tasks but have some limitations in fine-grained
ones, such as small object detection and semantic
segmentation.

Several multi-scale detection schemes have been consid-
ered in order to achieve good performance in both big- and
small-scale detection. In [4], default boxes of different scales
were set to multiple layers within the convolutional neural
network to predict objects at a certain scale on each layer.
Since the nodes of different layers correspond to different
receptive fields, it is natural to predict large objects from layers

with large receptive fields and to use layers with small recep-
tive fields to predict small objects. However, in order to per-
form small object detection well, these methods need to use
some information from dense feature maps as well as from
shallow layers with small receptive fields. Since shallow
layers have less semantic information about objects, this
may result in low performance for detecting small objects.
Another multi-scale object detection method is to use different
anchors in the feature map. For example, the Region Proposal
Network (RPN) stage of Faster R-CNN [9] can generate a
series of different scales of anchors, which can cover different
scales of objects. The original Faster R-CNN did not perform
well in small object detection, as demonstrated in RPN +BF
[20]. During network layer down sampling, deep layers lose
information related to small-sized objects. Therefore, it is nat-
ural to try to improve the small-scale object detection perfor-
mance by retaining information related to small objects, even
in deep layers.

Therefore, we propose a new context-aware deep neural
network by using the Faster R-CNN pipeline, in which the
deconvolutional module is added to bring in more semantic
context information. A new synthetic feature map is generated
by combining the deconvolution layer and high-level feature
map to enhance the feature representation and to solve the
problem of the shrinking resolution of feature maps in convo-
lution neural networks. Furthermore, the receptive field of our
DIF R-CNN is extended by atrous convolution, which also
helps to inject more context information. Compared with
multi-layer feature extraction methods like MS-CNN [4],
our method reuses the higher-resolution maps in the feature
hierarchy, instead of adding several feature maps for shallow
layers; this results in a more effective procedure for detecting
small objects.

3 Proposed context-aware deep neural
network

The overview diagram of proposed pedestrian detection
framework is illustrated in Fig. 2. As shown, our system con-
sists of the base network for initial feature map generation, the
deconvolution part for synthetic feature map generation, and
region proposals generated with atrous convolution and clas-
sification. Starting from the left, the entire image is forwarded
through the convolution layers to generate the initial feature
map (FM1). Based on the initial feature map, we apply
deconvolution with the encoder-decoder structure, combining
the deconvolution layer with the initial feature map to generate
the synthetic feature map that collects additional context in-
formation. Finally, atrous convolution is applied to the syn-
thetic feature map to generate region proposals. These pro-
posals are then classified and adjusted with the detection mod-
ule. In following section, our approach is explained in detail.
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3.1 Initial feature map generation

In the base network, we use Inception ResNet to generate the
initial feature map (FM1). Inception ResNet, proposed by
Szegedy et al. [18], combines the optimization benefits con-
ferred by residual connections with the computation efficiency
of inception units. The inception module approximates a
sparse CNN with a normal dense construction. It uses convo-
lutions of different sizes (5×5, 3×3, 1×1) to capture details at
various scales. As shown in Fig. 3, the Inception ResNet re-
places the filter concatenation stage of the Inception module
with residual connections. Compared with VGG16, Inception
ResNet can be made more efficient bymaking the architecture
deeper and wider. It also shows better performance than VGG-
16 in the ILSVRC 2014 classification and detection chal-
lenges. Therefore, we used the more advanced model (i.e.,
Inception ResNet) in our method.

By the repeated combination of max-pooling and
downsampling (‘striding’), performed at consecutive layers
of deep convolutional neural networks, the feature maps will
be significantly reduced in terms of their spatial resolution.
This lower spatial resolution facilitates the detection of small
pedestrians.

Followed the Inception-Resnet-v2 [18], a reduced
Inception-ResNet is adopted in our method. Each layer’s ker-
nel size, filter number, stride, and output size are shown in
Fig. 4. Instead of using the full network and getting the feature
map at the Mixed_7a layer, the output of the Inception ResNet
block17 is taken as an initial feature map. If the Mixed_7a
layer is used, the resolution of the feature map is too small,
losing almost all of the small object details. Therefore, the
feature map after block17 is selected. Furthermore, by setting
the stride=1, downsampling can be avoid, in order to retain as
much information about the small objects as possible in the
deep layers of the network Mixed_5b layer to the block17
layer. The output shape of the initial feature map is [33 ×
33 × 1088]. Thus, we adopt a feature map that is approximate-
ly 4 × 4 times larger when compared with the ordinary feature
map (with an 8 × 8 resolution) obtained fromMixed_7a in the
original full network. Finally, a deconvolution layer is used in

the base network to add the semantic information; this will be
explained in Section 3.2.

3.2 Synthetic feature map generation
with deconvolutional module

In order to help integrate information from the initial feature
map and the deconvolution layer, we used a deconvolutional
module that was shown to be helpful for small object detection
in DSSD [10]. The original deconvolutional module is in-
spired by Pinheiro et al. [21] who suggested that a factored
variant of the deconvolutional module for a refinement net-
work can lead to evenly matched accuracies as a more sophis-
ticated network, and the deconvolutional module can make
the network more efficient. Therefore, to strengthen features,
adding extra deconvolution layers is proposed. The
deconvolutional module in our experiments is built at the
end of the base network.

The deconvolutional module we adopted is shown in
Fig. 5, where 3 × 3 convolution and rectified linear activation
are used. For the deconvolution branch, the encoder-decoder
structure with 2×2 deconvolution is used followed by a 3×3
convolution. A batch normalization layer (BN) is added after
each convolution layer. FM2 is extracted after Mixed_7a as an
intermediate feature map. Then, the deconvolution layer is
added to enlarge the feature map size in order to match the
size of the initial feature map (FM1). Finally, element-wise
product is performed as a combination method, which is
followed by rectified linear activation to generate the synthetic
feature map.

Fig. 2 The proposed DIF R-CNN framework for pedestrian detection

Fig. 3 Inception ResNet module structure
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Fig. 4 Reduced Inception-
ResNet module structure
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3.3 Region proposals with atrous convolution

Atrous convolution, which is a powerful tool in dense predic-
tion tasks, allows us to effectively enlarge the field of view of
filters to incorporate larger context without increasing the
number of parameters or the amount of computation.
Another advantage is that atrous convolution can be conve-
niently and seamlessly integrated to compute the responses of
any layer.

The synthetic feature map is derived from the mid-level of
the network that do not have big enough receptive field. To
compensate for this, we designed our network to apply atrous
convolution onto the synthetic feature map to enlarge the re-
ceptive field and inject context information. Figure 6 illus-
trates an example of feature extraction with atrous convolution
in 2-D. Feature map a is produced from feature map b by an
atrous convolution with rate r = 2. Feature map a corresponds
to a receptive field of 9 × 9.

Atrous convolution with a rate r introduces r − 1 zeros be-
tween consecutive filter values, effectively enlarging the ker-
nel size of a k × k filter to k′ × k′ by using Eq. (1) without
increasing the number of parameters or the amount of compu-
tation.

k
0 ¼ k þ k−1ð Þ r−1ð Þ ð1Þ

In our experiment, the atrous convolution is used with a
3 × 3 kernel size and rate r = 2. Therefore, k′ = 5. After
block17, the output shape is [33 × 33 × 1088]. The corre-
sponding receptive field of each element is 47 × 47. After

atrous convolution, the output shape is still [33 × 33 × 1088],
but the receptive field of each element is 79 × 79; this means
that we can obtain more context information.

In Fig. 2, the right part illustrates the generation of pro-
posals with atrous convolution based on the synthetic feature
map and classification. To solve the multiple-scale detection
problem, different anchors are used with four scales [0.25,
0.5, 1.0, 2.0] and three aspect ratios [0.5, 1.0, 2.0]. For train-
ing, a binary label is assigned to each box according to two
different classes: pedestrian and non-pedestrian (i.e., back-
ground). Our loss function is defined as

L p; p̂̂; b; b̂̂
� �

¼ Lcls p; p̂̂ð Þ þ λLreg b; b̂̂
� �

; ð2Þ

where the classification loss Lcls is a softmax logistic loss over
the two classes, p̂ and p are the ture and predicted labels
separately. The second task loss Lreg is the bounding box re-

gression for positive boxes, Lreg b; b̂
� �

¼ R b−b̂
� �

; where R

is the robust smooth-L1 loss as defined in Faster R-CNN [9],
and b = (bx, by, bw, bh) represents the ground truth bounding

box associated with a posit ive anchor. Then b̂ ¼
b̂x; b̂y; b̂w; b̂h

� �
denotes the predicted bounding box and λ

is a trade-off parameter (empirically set to 10), for which a
larger value places a stronger emphasis on good bounding box
locations.

4 Experimental results

4.1 Implementation details

Our experiments are based on the open source framework of
TensorFlow Object Detection [22], and the model we used is
based on Inception-ResNet-v2 [18], which is pre-trained on

Fig. 5 Deconvolutional module

Fig. 6 Feature extraction with atrous convolution in 2-D
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the ILSVRC-CLS image classification dataset [23] . We
change the Mixed_6a stage’s convolution stride from 2 to 1
to increase the feature map resolution. However, the reduced
stride also shrinks the receptive field. In order to offset, atrous
convolution is used to enlarge the receptive field by increasing
the dilation rate to 2. Table 1 illustrates the resolution of blocks
of DIF R-CNN based on the pre-trained model. Then, the
resulting model is fine-tuned using SGD with an initial learn-
ing rate of 0.0001, momentum of 0.9, and batch size of 1; the
learning rate is reduced by a factor of 10 after 500,000 itera-
tions and again after 700,000 iterations. Learning stops after
800,000 iterations. With the fine-tuned network of region pro-
posals, non-maximum suppression (NMS) is adopted to elim-
inate highly overlapped bounding boxes with lower scores.
The value of the intersection over union (IoU) is defined as

IoU b1; b2ð Þ ¼ area b1∩b2ð Þ
area b1∪b2ð Þ ð3Þ

where b1 and b2 are the two proposal bounding boxes. In this
paper, we set the threshold to 0.7 because it is experimentally
demonstrated that this threshold can improve the detection
efficiency without affecting the performance. The generated
bounding boxes are ranked by their scores. If IoU > 0.7, it
means that b1 and b2 highly overlap. Then the detection
bounding boxes with the lower score will be eliminated.
After using non-maximum suppression (NMS), a total of
100 proposals are generated for the second stage detection
part. The full training and testing codes are built on
Tensorflow v1.4.0. The entire network is trained on a single
NVIDIA GeForce GTX TITAN X GPU with 12GB of
memory.

4.2 Caltech pedestrian dataset

The Caltech dataset [7] is one of the most popular datasets for
pedestrian detection. It contains 250 k frames captured from
10 h of urban traffic videos. The training data (set00-set05)
consists of six training sets, each with 6–13 one-minute long
sequence files, along with all annotation information. The
testing data (set06-set10) consists of five sets, again along
with all annotation information. The training and testing
dataset have different video sequences with respect to the
difficulty of pedestrian height, visibility, and aspect ratio. In
our experiments, the training images are extracted with one

out of every frame. There are 128,419 images for training and
4024 images for testing.

4.2.1 Detection evaluation on the Caltech pedestrian dataset

Our detection framework has been compared with five of the
latest fully deep learning methods: ADM [1], F-DNN + SS
[2], SDS-RCNN [3], MS-CNN [4] and SA-Fast RCNN [6].
Note that the competing methods [3, 4, 6] used the same
training set. For ADM [1], a joint training set consisting of
both Caltech and INRIA [24] training images is used. For F-
DNN + SS [2], Caltech training set, ETH [25] and
TudBrussels dataset [26] are used. We evaluate the perfor-
mance of various detectors using the log-average miss rate
(MR) which is computed by averaging the miss rate at false
positive rates spaced evenly between the 10−2 to 1 false-
positive-per-image (FPPI) range. The comparison results are
evaluated for pedestrian instances of three scenarios: (a) rea-
sonable case, i.e. no less than 50 pixels in height and at least
65% unoccluded, (b) far-scale case, i.e. shorter than 50 pixels,
and (c) overall case, which is a combination of all scales and
occlusions.

Figure 7a displays the quantitative results of the reasonable
case. Our approach achieves a very low log-average miss rate
of 7.79%, which is competitive with the state-of-the-art SDS-
RCNNmethod [3]. However, SDS-RCNN [3] performs poor-
ly in small-sized pedestrian detection. As exhibited in Fig. 7b,
for the far-scale case, our method demonstrates a noticeable
improvement (over12%) compared to the state-of-the-art
method. Our approach achieves the lowest miss rate of
42.66%, where the next best method (ADM [1]) has a miss
rate of 54.95%. Figure 7c presents the overall performance.
Our method again significantly outperforms the others follow-
ing a performance trend that is similar to that of the far-scale
case; this makes sense because the number of far-scale in-
stances dominates the overall pedestrian population of the
Caltech benchmark. Our approach outperforms all compari-
son methods and achieves the lowest log-average miss rate of
35.40%, which clearly exceeds the two next best results:
42.27% for ADM [1] and 50.29% for F-DNN + SS [2].

Figure 8 presents four different example images in four
rows from the Caltech testing set. The detection results of
the related works [1–3] are shown in the figure and compared
with ours. The small-sized instances, which are labelled as
ignored instances with ground truth bounding boxes less than
20 pixels in height, are also shown. One can observe that most
pedestrians, including far-scale instances, can now be detected
correctly by our approach. In contrast, the state-of-the-art
methods, such as ADM [1], F-DNN + SS [2] and SDS-
RCNN [3], generate more false positives as well as more false
negatives.

Table 2 shows a comparison report between our method
and recent popular pedestrian detection methods in terms of

Table 1 The resolution
of blocks of DIF R-CNN
based on the pre-trained
Inception-ResNet-v2
model

Layer Resolution

Mixed_5b - block35 35 × 35

Mixed_6a - block17 33 × 33

Initial Feature Map (FM1) 33 × 33

Mixed_7a 17 × 17
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their computation efficiency. Images with 720×960 pixels are
used which is the same size with other compared methods
[2–4, 6], while the ADM [1] use images with 480×640 pixels
for testing runtime. A single NVIDIATITIAN X GPU is used

for computation. The efficiency of DIF R-CNN surpasses the
current state-of-the-art methods for pedestrian detection. This
shows that our method outperforms both in accuracy and in
runtime.

(a) DIF R-CNN (ours)            (b) ADM [1] (c) F-DNN+SS [2] (d) SDS-RCNN [3]

Fig. 8 Visual comparisons of our detection results vs. those of two state-of-the-art methods on the Caltech benchmark. The red bounding boxes show the
detection results, and the green bounding boxes denote the ground truth. a DIF R-CNN (ours), b ADM [1], c F-DNN+SS [2], d SDS-RCNN [3]

(a) Reasonable (person height > 50 pixels) (b) far-scale (person height < 50 pixels) (c) overall

Fig. 7 Comparisons of detection results (miss rate versus false positive per image) on the Caltech pedestrian dataset. a Reasonable (person height > 50
pixels), b far-scale (person height < 50 pixels), c overall
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4.2.2 Ablations experiments

This subsection is devoted to investigating the effectiveness of
different components of DIF R-CNN. The simulation experi-
ments are performed on the Caltech pedestrian dataset. The
initial simulation is the original Inception-ResNet with Faster
R-CNN framework. Then the atrous convolution has been
added to make an improved version, which is the
IncepResNet+Atrous. Finally, to form our DIF R-CNN, two
changes are made. First, a deconvolutional module is added.

Second, the base network is changed to reduced Inception-
ResNet. Because the deconvolutional module includes once fea-
ture map upsampling, to match the deconvolution layer, the
reduced network module is used with adopting prior layer in-
stead of the last layer as the output feature map. Figure 9 shows
the comparisons of the performancewhile training. During train-
ing, the mean Average Precision at 0.5 IoU (Intersection over
union) threshold (mAP@0.5) is used as an evaluation metric. A
quarter of training data are used for validation. The highest
precision based on original Inception-ResNet is 62.59% after
843.8 k iterations, while the IncepResNet+Atrous achieves
66.13% after 804.4 k iterations. The DIF R-CNN brings a no-
ticeable improvement that achieves the precision of 80.78%
after 800.0 k iterations. The green curve (present DIF R-CNN)
becomes almost flat from 720.0 k, but it decreases with further
iterations. The precision drops to 77.06% after 819.6 k iterations.
Therefore, we catch the model at 800.0 k and stop the training.
Figure 10 presents the detection miss rates with these three sim-
ulations on Caltech testing set. From the original Inception
ResNet to the proposed DIF R-CNN, comparing three simula-
tions, the miss rate gets smaller and smaller as the neural net-
work architecture is optimized.

Table 2 Comparison of DIF R-CNN with other state-of-the-art
methods based on the Caltech miss rate and runtime performance

Method Miss rate (overall) Runtime

SDS-RCNN [3] 61.50 0.21 s

MS-CNN [4] 60.95 0.4 s

SA-Fast RCNN [6] 62.59 0.59 s

F-DNN + SS [2] 50.29 2.48 s

ADM [1] 42.27 0.58 s

DIF R-CNN (ours) 35.40 0.18 s

Fig. 9 The validation precision of original Inception-ResNet with Faster RCNN, IncepResNet+Atrous, and DIF R-CNN during training

(a) Reasonable (person height > 50 pixels) (b) Far-scale (person height < 50 pixels) (c) Overall

Fig. 10 Comparisons of original Inception-ResNet with Faster RCNN, IncepResNet+Atrous, and DIF R-CNN detection results on the Caltech pedes-
trian testing dataset. a Reasonable (person height > 50 pixels), b Far-scale (person height < 50 pixels), c Overall
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4.3 Okutama human-action datasets

In this section, the results obtained by our algorithm are present-
ed based on another new aerial view dataset, Okutama human-
action dataset [5], which is used for human detection and human
action understanding from a real-world aerial view. In our case,
only the human detection task is considered. The Okutama
dataset contains a total of 43 video sequences (33 training video

sequences and 10 testing video sequences) at 30 FPS and 77,365
frames in 4K resolution. These sequences were recorded using 2
UAVs flying at altitudes varying between 10 and 45 m and with
camera angles of 45 or 90 degrees. This dataset is fully-annotated
by providing all bounding boxes of the label Pedestrian. The
training images are extracted from every 10 frames. In total, we
get 5904 images with 3480×2160 pixels. Since the annotation of
the testing set are not available, the data is split with the common
trade-offs: 70% of the data into training subset and 30% of the
data into validation subset. This dataset is more challenging due
to the aerial view angle and rather small person’s height in large-
sized images.

Regarding training and fine-tuning, the model is trained
with an initial learning rate of 0.0003, momentum of 0.9,
and batch size of 1. The learning rate is reduced by a factor
of 10 after 170,000 iterations and learning stops after 200,000
iterations. Since the ratio of pedestrian size over image size of
this dataset is small, the anchors are set from 0.125 instead of
0.25. The mean Average Precision at 0.5 IoU threshold
(mAP@0.5) is used as an evaluation metric like many other
object detection methods [22]. The baseline method SSD
which is given with Okutama dataset [5] achieved 81.4% of
mAP for the validation set. Since the labels for testing set are
not available, the authors recommended to use the validation
set for comparisons. Our approach achieves 90.3% in terms of
mAP, resulting significant improvement of 8.9%. Figure 11

Fig. 11 The pedestrian detection comparison of DIF R-CNN and the
baseline method on the Okutama human-action dataset

(a) Detection results of DIF R-CNN (ours)   (b) Detection results of baseline method, SSD-Okutama [6].

Fig. 12 Visual comparisons of our detection results vs. the baseline
methods on the Okutama human-action dataset. The red bounding boxes
show the detection results, and the green bounding boxes denote the

ground truth. a Detection results of DIF R-CNN (ours), b Detection
results of baseline method, SSD-Okutama [6].
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shows the precision-recall curve of our proposed DIF R-CNN
and the baseline method. Figure 12 is the visual comparisons
of the detection results, by using two different example images
in two rows from the Okutama validation set. The SSD meth-
od produces more false positives than those of our approach.

Table 3 shows a comprehensive comparison between our
method and the baseline method in terms of their performance
and computation efficiency. We tested on a single NVIDIA
TITIAN X GPU. Although the SSD method achieved better
speed of 0.028 s per image (our network takes 0.22 s per
image), the precision gap between SSD and ours is significant,
almost 9%. In order to realize the real-time detection, we plan
to improve the speed in the future works.

5 Conclusion and future works

In this paper, a novel context-aware Deconvolution Integrated
Faster R-CNN (DIF R-CNN) is proposed for pedestrian detec-
tion, especially for small-sized instances. It is based on the Faster
R-CNN pipeline with a deconvolutional module and atrous con-
volution adopted to capture more context information. A synthet-
ic feature map is generated to provide both visual details and
semantic context representation. Furthermore, the state-of-the-
art CNNmodel Inception-ResNet is integrated into our approach.
Extensive experiments demonstrated that the proposed DIF R-
CNN is superior in detecting small-sized pedestrian instances and
achieves comparable or better performance relative to other state-
of-the-art methods on several challenging datasets. For future
works, we plan to improve the detection speed by further simpli-
fying the network structure and making the model size smaller
with network compression technology and to resolve the chal-
lenges of detecting heavily occluded pedestrian instances.
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