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Abstract: Pedestrian-related accidents are much more likely to occur during nighttime when visible
(VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total
darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal
energy characteristics that can differ depending on the weather. To overcome these drawbacks, we
propose an IR camera system to identify pedestrians at night that uses a novel attention-guided
encoder-decoder convolutional neural network (AED-CNN). In AED-CNN, encoder-decoder modules
are introduced to generate multi-scale features, in which new skip connection blocks are incorporated
into the decoder to combine the feature maps from the encoder and decoder module. This new
architecture increases context information which is helpful for extracting discriminative features from
low-resolution and noisy IR images. Furthermore, we propose an attention module to re-weight
the multi-scale features generated by the encoder-decoder module. The attention mechanism
effectively highlights pedestrians while eliminating background interference, which helps to detect
pedestrians under various weather conditions. Empirical experiments on two challenging datasets
fully demonstrate that our method shows superior performance. Our approach significantly improves
the precision of the state-of-the-art method by 5.1% and 23.78% on the Keimyung University (KMU)
and Computer Vision Center (CVC)-09 pedestrian dataset, respectively.
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1. Introduction

Pedestrian detection has attracted considerable attention from researchers in computer vision.
Although many studies in pedestrian detection areas have been reported during the past decade [1–8],
most of them are confined to detecting pedestrians during daytime using visible (VI) cameras. However,
the performance of VI cameras depends on good illumination conditions and can be affected when
illumination is poor. Recently, multispectral detectors that employ a fusion of infrared (IR) and
VI cameras have been developed to achieve robust and reliable pedestrian detection in adverse
illumination circumstances [9–13]. However, the multispectral detectors cannot work well at nighttime
since the VI sensor only works when there is a substantial amount of visual information in the
environment. Furthermore, the multispectral detectors only support fully aligned images. On a dark
night, IR-based pedestrian detectors can effectively replace VI- and multispectral-based detectors,
because the IR sensors do not require external light but mainly rely on the radiant temperature of the
object. IR pedestrian detection has a wide range of applications, such as patrols, video surveillance,
and rescues at night.

The main challenges for robust IR pedestrian detection can be classified into two main types. First,
IR images have some adverse properties, such as their noisy nature, low-resolution, and no visual
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detailed information. These adverse properties make the discriminative feature extraction of an object
very difficult, and thus affect the detection performance. Second, IR images are susceptible to weather
conditions since IR cameras detect the difference in the temperature of the environment. For instance,
pedestrians look brighter than the background in cold weather, while their brightness looks similar to
the background in hot weather.

Traditional IR pedestrian detection methods require manually designed features to describe IR
objects, which are not conducive to extracting informative features from unstable IR images since IR
sensors are susceptible to changeable weather conditions. In recent years, new technologies have been
reported with very promising results. Deep learning has enabled progress on object detection using
deep convolutional neural networks (CNNs) due to the capacity to generate semantic features via
learning from raw pixels. This approach has superior discriminative ability to recognize targets with
various shapes from a complex background [14–20]. Therefore, it is very natural to apply the CNN to
IR pedestrian detection. A CNN-based method is an effective tool for IR object detection since it can
handle variations on images affected by environmental changes, as long as these effects are widely
present in the dataset. Therefore, our goal is to design an effective CNN framework specialized for IR
pedestrian detection at night time that can achieve the best performance regardless of low-resolution
or season changes.

In this research, a new attention-guided encoder-decoder convolutional neural network for
accurate IR pedestrian detection at night, called AED-CNN, is developed. The AED-CNN mainly
contains an encoder-decoder module and an attention module. The encoder-decoder structure
efficiently captures the long-range context information while keeping the spatial information of IR
objects, which is helpful for extracting discriminative features from low-resolution and noisy IR images.
Based on the encoder-decoder modules, we further propose an attention module to overcome the
variation problem due to changeable thermal energy in IR images under different weather conditions.

The following are the main contributions of this work.

• First, novel encoder-decoder modules are proposed to generate multi-scale features. We add an
additional decoder module at the end of the single shot multibox detector (SSD) [16] architecture
(encoder module) to form an encoder-decoder module, in which a new skip connection block is
incorporated into each layer of the decoder to integrate the feature maps from the encoder and
decoder modules. The proposed encoder-decoder modules effectively enrich the feature maps via
integrating the high-level semantically strong features with low-resolution and low-level detailed
features with high-resolution. This method is effective to extract discriminative features even
from low-resolution and noisy IR images.

• Second, we propose an attention module that re-weights the multi-scale features generated from the
encoder-decoder module. By adding the attention mechanism, the network selectively emphasizes
useful information and suppresses ineffective information while re-weighting the features from the
encoder-decoder modules. The attention module significantly eliminates background interference
while highlighting pedestrians so that there is a boost in the detection performance of the IR
pedestrian detector, even when the brightness is similar among the pedestrians and backgrounds.

• Finally, experimental results on two challenging datasets demonstrate that our AED-CNN shows
the best performance. Our approach outperforms in detection precision by 5.1% and 23.78% on
the Keimyung University (KMU) [21] (the KMU pedestrian detection database [21] is downloaded
from: https://cvpr.kmu.ac.kr/ for academic use) and Computer Vision Center (CVC)-09 [22] (the
CVC-09 far infrared (FIR) sequence pedestrian dataset [22] (available online, 28 April 2016)
is download from: http://adas.cvc.uab.es/elektra/enigma-portfolio/item-1/) pedestrian datasets,
respectively, when compared with the state-of-the-art oriented center-symmetric local binary
(OCS LBP) + cascade random forest (CaRF) [21] method.

The remaining part of this paper is arranged in the following manners. Section 2 briefly introduces
the previous related works. Section 3 explains the proposed AED-CNN in detail. Experimental

https://cvpr.kmu.ac.kr/
http://adas.cvc.uab.es/elektra/enigma-portfolio/item-1/


Appl. Sci. 2020, 10, 809 3 of 18

results and analysis are presented in Section 4. Finally, Section 5 summarizes our work and describes
future works.

2. Background

2.1. Infrared (IR) Pedestrian Detection

In the past decades, IR pedestrian detection has attracted much interest from many researchers.
Hotspot + SVM [23] acquiesced that a pedestrian’s body looks brighter than the background. It
generated pedestrian candidates by searching hotspot regions, then a support vector machine (SVM)
was applied to conduct the detection stage. On the basis of hotspot features, Ko et al. [24] added analysis
of face and shoulder parts in candidate hotspot regions and exploited a random forest classifier to classify
the candidates. In [25], a dual-threshold segmentation method was developed to generate regions of
interest (ROIs) via detecting hotspot regions. Then the Haar-like and histogram-of-oriented-gradients
(HOG) features were extracted for classification. However, the aforementioned hotspot-based methods
only show reasonable performance when the thermal energy difference between pedestrians and
background is distinguishable. It generates considerable missing instances during hot weather or
when the pedestrians wear well-insulated clothing. In [26], a stereo system formed by combining
two IR cameras was introduced, in which hotspot detection, edge detection, and disparity calculation
were adopted to produce candidate regions. Then, the morphology and thermal features of the
pedestrian’s head were used to validate candidate regions. In [27], a feature-based region growth with a
high-intensity seed method is proposed for segmenting pedestrians, in which vertical deviation-based
morphological closing is combined to compensate for distortion caused by clothing. Zhao et al. [28] first
proposed a contour precision saliency map for detecting ROI. Then the shape distribution histogram
feature was acquired by calculating the distances between the random points on the thinned contour
map in the ROI. Finally, a modified sparse representation classification (MSRC) method was developed
to detect IR pedestrians. OCS-LBP + CaRF [21] exploited the oriented center-symmetric local binary
pattern (OCS-LBP) features to describe the IR pedestrians, and proposed a cascade random forest
(CaRF) to classify pedestrians. Biswas et al. [29] proposed a local steering kernel (LSK) to reduce
intrinsic noise in IR images and combined an image similarity kernel with SVM to train the LSK tensor.
Recently, Heo et al. [30] applied a CNN, named ‘you only look once version 2′ (YOLOv2) [20] to IR
pedestrian detection. They proposed a handcrafted adaptive Boolean-map-based saliency (ABMS)
kernel to infuse with YOLOv2. Cao et al. [31] presented an automatic region proposal network by
designing a new loss function and adding a segmentation task, for IR pedestrian detection. This
method does not consider the factors that IR images are susceptible to environmental changes, and
thus the results are not ideal. In the latest work [32], a CNN-based IR person detector based on residual
network (ResNet) [33] and atrous spatial pyramid pooling (SPP-net) [34] was proposed. The developed
IR person detector was evaluated by using infrared closed-circuit television (CCTV) images.

2.2. Convolutional Neural Network (CNN)-Based Object Detection

With the rapid growth of CNN technologies recently, a large variety of CNN-based approaches
have facilitated object detection to a new stage. CNN-based object detectors are generally grouped into
two main categoreis. The first categore is termed as two-stage approaches, including fast region-based
CNN (Fast R-CNN) [14] and Faster R-CNN [15]. The two-stage methods include two parts. The
first part aims to generate a sparse series of candidate object proposals, and the second part refines
the candidate proposals to determine the accurate objects locations and its corresponding class label.
Although the aforementioned two-stage detectors achieve desirable accuracy, the computational speed
is slow. By contrast with two-stage detectors, one-stage methods such as SSD [16] and YOLO [20,35]
avoid generating region proposals and resampling features by encapsulating all operations in a single
network, which performs better in speed than the two-stage detectors. In CNN-based methods, the
high-level layers which contain sufficient semantic features lack the detailed spatial features of the
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objects because of the striding operations in pooling and convolutional layers. This makes it hard to
extract discriminative features. Consequently, it is difficult to identify target locations. On the contrary,
the features from the low-level layers which contain enough spatial information but lack the semantic
information are not robust enough to the challenges of appearance variation and occlusions. To address
these issues, some networks [18,36] try to observe and utilize the pyramidal features to a large extent
by building an encoder-decoder architecture with lateral connections. These networks show dramatic
improvements in accuracy when compared with conventional detectors. However, effective methods
to combine the information from the encoder and decoder modules for good performance still need to
be explored. Motivated by the aforementioned works, we introduce a novel encoder-decoder module
that takes an IR image as an input to the encoder module to capture richer semantic information
and adopts a decoder module to progressively recover the spatial information. In our proposed
encoder-decoder module, a new skip-connection block is used to fuse the information from the encoder
and decoder module. The encoder-decoder structure can efficiently capture the long-range context
information while keeping the spatial information of IR objects. This owes to the expressiveness of the
encoder-decoder layers, which are originated from the combinatorial nature of Rectified Linear Unit
(ReLU) for decomposition and reconstruction.

2.3. Attention Mechanism

Attention mechanism is widely utilized in CNNs to solve different computer vision tasks, like
video classification [37] and object detection [38]. Wang et al. [37] applied the attention mechanism
to non-local filter operation, which is effective in performing classification tasks in videos through
computing the feature relationships in different positions. DeepSaliency [38] exploited the attention
mechanism to learn the spatial relationships between salient features, which shows promising results
for object detection and segmentation tasks. The above works are to investigate to model spatial
correlations. In contrast, another method, squeeze-and-excitation network (SENet) [39], is to model the
correlative dependence between channels of CNN features to perform feature recalibration. It utilizes
global information to learn layout or emphasis of the scene and to obtain the context information
which guides visual processing to task-related image regions. Inspired by SENet [39], we find that
we can recalibrate the features in the decoder aiming at guiding the detector to pay more attention
to pedestrian locations. Specifically, we propose an attention module that adopts SE blocks to learn
attention vectors from the feature maps in the encoder. Then the learned attention vectors are utilized
to scale the feature maps from the decoder to enhance informative features and to suppress less useful
features. The attention module indicates the probability that each pixel belongs to a pedestrian region.
It has a high discriminative capability to recognize a human target, because background interference is
reduced, and pedestrians are highlighted.

In this research, a novel attention-guided encoder-decoder convolutional neural network
(AED-CNN) is developed to detect pedestrians in IR images. To better describe pedestrians in
low-resolution and noisy IR images, the encoder-decoder module is adopted, in which a skip
connection block is integrated to effectively combine the features from the encoder and decoder for
increasing additional context information. Furthermore, the attention module is proposed to highlight
pedestrians while eliminating background interference, which can help to detect pedestrians under
different weather conditions.

3. Proposed Attention-Guided Encoder-Decoder Convolutional Neural Network (AED-CNN)

The proposed AED-CNN mainly contains an encoder-decoder module and an attention module.
The encoder-decoder module takes an IR image as an input to the encoder module to capture rich
semantic information and adopts a decoder module to progressively recover the spatial information.
The attention module learns attention vectors from the feature maps in the encoder, which are used
to scale the feature maps from the decoder. The attention module effectively enhances informative
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features to highlight pedestrians and suppress less useful features to exclude background interference.
In the following sections, we give detailed explanations.

3.1. Overview of the Proposed AED-CNN Architecture

Figure 1 presents an overview of our AED-CNN architecture. The input image is processed by
the encoder module. The encoder gradually reduces the resolution of the feature map for conducting a
multi-scale search of bounding boxes, as in the SSD [16]. Then, the feature maps in the decoder are
up-scaled via deconvolutional layers and then combined with the corresponding feature maps of the
same resolution in the encoder through skip connection blocks. The multi-scale features generated by
the encoder-decoder module are re-weighted through the attention net. Finally, these re-weighted
features are sent to the prediction stage for classifying pedestrians and regressing bounding boxes. The
architectures of skip connection block and the attention net are presented in Figures 2 and 3, respectively.

Appl. Sci. 2020, 10, 809 5 of 18 

features to highlight pedestrians and suppress less useful features to exclude background 
interference. In the following sections, we give detailed explanations. 

3.1. Overview of the Proposed AED-CNN Architecture 

Figure 1 presents an overview of our AED-CNN architecture. The input image is processed by 
the encoder module. The encoder gradually reduces the resolution of the feature map for conducting 
a multi-scale search of bounding boxes, as in the SSD [16]. Then, the feature maps in the decoder are 
up-scaled via deconvolutional layers and then combined with the corresponding feature maps of the 
same resolution in the encoder through skip connection blocks. The multi-scale features generated 
by the encoder-decoder module are re-weighted through the attention net. Finally, these re-weighted 
features are sent to the prediction stage for classifying pedestrians and regressing bounding boxes. 
The architectures of skip connection block and the attention net are presented in Figures 2 and 3, 
respectively. 

 
Figure 1. Architecture of the proposed attention-guided encoder-decoder convolutional neural 
network (AED-CNN). 

 

Figure 2. Skip connection block. 

Figure 1. Architecture of the proposed attention-guided encoder-decoder convolutional neural network
(AED-CNN).

Appl. Sci. 2020, 10, 809 5 of 18 

features to highlight pedestrians and suppress less useful features to exclude background 
interference. In the following sections, we give detailed explanations. 

3.1. Overview of the Proposed AED-CNN Architecture 

Figure 1 presents an overview of our AED-CNN architecture. The input image is processed by 
the encoder module. The encoder gradually reduces the resolution of the feature map for conducting 
a multi-scale search of bounding boxes, as in the SSD [16]. Then, the feature maps in the decoder are 
up-scaled via deconvolutional layers and then combined with the corresponding feature maps of the 
same resolution in the encoder through skip connection blocks. The multi-scale features generated 
by the encoder-decoder module are re-weighted through the attention net. Finally, these re-weighted 
features are sent to the prediction stage for classifying pedestrians and regressing bounding boxes. 
The architectures of skip connection block and the attention net are presented in Figures 2 and 3, 
respectively. 

 
Figure 1. Architecture of the proposed attention-guided encoder-decoder convolutional neural 
network (AED-CNN). 

 

Figure 2. Skip connection block. Figure 2. Skip connection block.



Appl. Sci. 2020, 10, 809 6 of 18

Appl. Sci. 2020, 10, 809 6 of 18 

 
Figure 3. Attention net. 

3.2. Encoder Module 

As shown in Figure 1, using a similar method as in SSD [16], the encoder module is built on top 
of a “base” network (a feedforward convolutional network that contains several convolution layers 
and pooling layers) which is followed by a series of progressively smaller convolution layers to 
constitute a cascade of feature maps with a gradually increasing field of view and decreasing spatial 
resolution. The VGG-16 [40] is chosen as our “base” network since it has good detection performance 
as well as fast detection speed. Following [19], two additional convolution layers (conv6-1 and conv6-
2) are added after fully connected layer (Fc7) of the truncated VGG-16 to obtain more semantic 
information at a high-level and to detect pedestrians at multi-scales. However, it is hard for SSD to 
classify the pedestrians in IR images of low-resolution and with noisy characteristics, owing to the 
weak semantic information on the shallow features. Inspired by [18], we added a decoder module in 
the proposed architecture to improve the quality of IR images. The decoder module can increase more 
context information that enriches semantic features extracted from IR images. The decoder module 
is described in the next section. 

3.3. Decoder Module 

In the encoder module, the low-level layers contain high spatial resolution but lack enough 
semantic features. By contrast, the high-level layers have rich semantic features but low spatial 
resolution. It is difficult to extract discriminative features from the feature layers of encoder module 
to detect pedestrians in low-resolution IR images. In [18], the deconvolutional network has been 
proposed to refine the traditional feedforward convolutional network, which shows that the 
deconvolutional module equalizes the representability of each feature map of a sophisticated 
network and makes the network more efficient. Therefore, to include more high-level context in 
detection, we add a decoder module at the end of the encoder to effectively make an encoder-decoder 
hourglass network structure. The decoder module consists of a series of deconvolution layers with 
successively increasing resolution of feature map layers, namely deconvolution layer 1 (D1) to 
deconvolution layer 4 (D4), as shown by the red blocks in Figure 1. In [18], five deconvolution layers 
are used from the top-most feature maps, in which all fine details are missing. Moreover, the 
additional deconvolution layers result in more computational cost, making it impractical for real-
time applications because of the large inference time. To overcome this, we make our decoder 
shallower and only four layers are used to maintain a higher detection speed. 

3.3.1. Skip Connection Block 

As mentioned above, the encoder-decoder module is exploited to obtain feature maps with rich 
context information via combining the high-level semantic information with the low-level detailed 
information. To this end, a new skip connection block, as shown in Figure 2, is introduced to fuse the 

Figure 3. Attention net.

3.2. Encoder Module

As shown in Figure 1, using a similar method as in SSD [16], the encoder module is built on top of
a “base” network (a feedforward convolutional network that contains several convolution layers and
pooling layers) which is followed by a series of progressively smaller convolution layers to constitute a
cascade of feature maps with a gradually increasing field of view and decreasing spatial resolution.
The VGG-16 [40] is chosen as our “base” network since it has good detection performance as well
as fast detection speed. Following [19], two additional convolution layers (conv6-1 and conv6-2) are
added after fully connected layer (Fc7) of the truncated VGG-16 to obtain more semantic information
at a high-level and to detect pedestrians at multi-scales. However, it is hard for SSD to classify the
pedestrians in IR images of low-resolution and with noisy characteristics, owing to the weak semantic
information on the shallow features. Inspired by [18], we added a decoder module in the proposed
architecture to improve the quality of IR images. The decoder module can increase more context
information that enriches semantic features extracted from IR images. The decoder module is described
in the next section.

3.3. Decoder Module

In the encoder module, the low-level layers contain high spatial resolution but lack enough
semantic features. By contrast, the high-level layers have rich semantic features but low spatial
resolution. It is difficult to extract discriminative features from the feature layers of encoder module to
detect pedestrians in low-resolution IR images. In [18], the deconvolutional network has been proposed
to refine the traditional feedforward convolutional network, which shows that the deconvolutional
module equalizes the representability of each feature map of a sophisticated network and makes the
network more efficient. Therefore, to include more high-level context in detection, we add a decoder
module at the end of the encoder to effectively make an encoder-decoder hourglass network structure.
The decoder module consists of a series of deconvolution layers with successively increasing resolution
of feature map layers, namely deconvolution layer 1 (D1) to deconvolution layer 4 (D4), as shown by
the red blocks in Figure 1. In [18], five deconvolution layers are used from the top-most feature maps,
in which all fine details are missing. Moreover, the additional deconvolution layers result in more
computational cost, making it impractical for real-time applications because of the large inference time.
To overcome this, we make our decoder shallower and only four layers are used to maintain a higher
detection speed.

Skip Connection Block

As mentioned above, the encoder-decoder module is exploited to obtain feature maps with rich
context information via combining the high-level semantic information with the low-level detailed
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The attention module plays an important role in AED-CNN to re-weight the multi-scale features.
As shown in the lower part of Figure 1, the attention module contains four attention nets which take the
feature maps of the same scale in the encoder and decoder as inputs, and then outputs four re-weighted
feature maps in multi-scales for the final pedestrian prediction part. Under different weather conditions,
the difference in thermal energy between pedestrian and background will change. In hot weather,
pedestrians’ brightness looks similar to the background, which makes it difficult for pedestrians to be
distinguished. The success of SENet [39] shows the effectiveness of the attention mechanism on images
classification. SENet proposed a channel-wise attention mechanism that helps to selectively enhance
useful features and suppress ineffective features by performing feature recalibration. For IR pedestrian
detection, we need to find the most effective features to highlight IR pedestrian regions. Therefore, we
propose attention net to recalibrate the multi-scale features generated by the decoder module, in which
large weights are assigned to channels that show a high response to IR objects. The key idea of the
attention net is to learn the feature weights according to the loss, with the objective of maximizing
the weights of effective feature maps and minimizing the weights of less effective feature maps. The
attention mechanism filters out some background details according to re-weighted features and focuses
more on the foreground regions, which helps to generate effective features for pedestrian detection.

Figure 3 shows the architecture of our attention net. The left side of Figure 3 takes the feature
map in the encoder as the input guidance G. Then the guidance G passes through one global average
pooling layer and two fully connected (FC) layers (The two FC layers are followed by a ReLU layer
and a sigmoid layer, respectively) to learn the mapping function F used to generate the channel-wise
attention vector Q:

Q = F
(
GT

)
(1)

The generated attention vector Q is used to scale the layer of the decoder. We apply the same
attention net to four groups of feature maps of the same scale from the encoder and decoder. Finally,
four multi-scale re-weighted layers are generated, which will be used for the final pedestrian prediction
task. Figure 4 shows a visualization of feature maps with and without the attention module. One can
see that the pedestrian regions are highlighted while the backgrounds are suppressed, in the feature
maps from the attention module.

The attention module specifically models the interdependencies between the convolutional
channels that effectively boost the representational capability for various samples. After applying the
attention module, more useful features are emphasized while less informative ones are restrained,
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feature maps from the decoder and the corresponding feature maps from the encoder. In order to share 

the structure of skip connection block, the deep layers are symmetrically connected with these shallow 

layers. In other words, the deep features have the same down sampling factor. Specifically, feature 

maps in the decoder are up sampled and then merged with the feature maps in the encoder. Figure 2 

shows the proposed skip connection block. First, the feature map in the decoder is up sampled by
a 2 × 2 deconvolution layer to match the size of the feature map in the encoder. The feature map in 

the encoder is followed by a 3 × 3 convolution layer, a ReLU layer, and a 3 × 3 convolution layer. We 

merge them by using the element-wise sum. Then, the summed layer passes through a block (ReLU,
3 × 3 convolution, ReLU), which is useful for discernable feature extraction as proven in [19], and then 

summed with the deconvolution layer, which skips the block. Note that the Conv6-2 directly goes 

through the first skip connected block to generate D1 without combination with the feature map in the 

encoder module. The skip connection is beneficial to back-propagation, which can effectively solve the 

problem of performance degradation of deep convolutional neural networks under extremely deep 

conditions, as shown in [33]. It speeds up the training of a deeper network and thus makes the learning 

easier. In addition, the skip connection helps traverse the information in deep neural networks to boost 

the classification performance.

3.4. Attention Module
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via re-weighting the sample-reliant features. In other words, the pedestrians are highlighted, while
the background interferences are suppressed. This ensures the performance of the detector when the
thermal energy of pedestrians is not distinguishable due to weather changes. The attention module is
not only easy to implement but also realizes remarkable improvements at little extra computational cost.
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3.5. Training

3.5.1. Matching and Hard Negative Mining

In the training stage, the anchor boxes are used to localize objects in multiple scales, which need
to be matched with the ground truth bounding boxes. The correspondence between each ground truth
bounding box A to the anchor box B is determined by the jaccard overlap [41]. The value of the jaccard
overlap is defined as:

J(A, B) =
area(A∩ B)
area(A∪ B)

(2)

Each ground truth bounding box is first matched to the anchor box with the best J(A, B). Then the
remaining anchor boxes are matched to any ground truth with J(A, B) > 0.5. This strategy is beneficial
to predict multiple bounding boxes with high scores for overlapped objects. After matching, the
majority of samples are negative. Similar to SSD [16], we select the negative samples with the top loss
values from the non-matched anchor boxes to set the ratio between positive and negative samples
as 1:3.

3.5.2. Loss Function

Equation (3) shows our overall loss function, which is a weighted summation of the two branches,
one is the confidence loss (conf ) of the softmax classifier, and the other is the localization loss (loc) of
the bounding box regression.

L(
{
pi
}
, {ti}) =

1
N
(
(
Lcon f

(
pi, p∗i

))
+ λLloc

(
ti, t∗i

))
(3)

where p∗i is the ground truth label of an anchor i in a mini-batch, and the value of pi is the probability
of an anchor i being a pedestrian. The ground truth location of the anchor i is denoted by t∗i and



Appl. Sci. 2020, 10, 809 9 of 18

the predicted bounding box location of the anchor i is represented by t∗i . N denotes the number of
positive anchors. Notably, if N = 0, the overall loss L = 0. Currently, we set weight term λ to 1 via
cross-validation. The classification loss Lcon f is the cross-entropy loss over two classes (pedestrian vs.
non-pedestrian). As in Fast R-CNN [14], the smooth L1 loss is adopted as our regression loss Lloc.

Lloc
(
ti, t∗i

)
=

∑
j∈{x,y,w,h}

smoothL1

(
t j, t∗j

)
(4)

where smoothL1 is defined as:

smoothL1(x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise,

(5)

3.5.3. Optimization

The “base” network VGG-16 in our AED-CNN is pretrained on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset [42]. The Xavier approach [43] is applied to initialize the
parameters of two additionally convolutional layers (conv6-1 and conv6-2). In training, the default
batch size is set to 11. Then, the entire network is fine-tuned by using a stochastic gradient descent
method with the momentum 0.9 and weight decay 0.0005. To prevent gradient explosion in early
iterations, we first run 10 k (where k = 1000) iterations using a learning rate of 0.00005. Then, we
reset the learning rate to 0.001 for the next 70 k iterations. After the completion of 70 k iterations, the
learning rate is reduced by 10 times after every 20 k iterations. Learning stops after 120 k iterations.

4. Experimental Results

4.1. Datasets and Processing Platform

Even though there are extensive color video/image datasets for pedestrian detection, only a small
number of thermal infrared pedestrian datasets are available. In this study, we evaluate our proposed
AED-CNN on the widely used KMU [21] and CVC-09 [22] pedestrian datasets.

The KMU was captured by a far infrared (FIR) camera from moving vehicles (at 20 to 30 km/h)
during the summer and winter nights for pedestrian detection. The training data contains 4474 positive
images and 3405 negative images. The positive images include pedestrians with various sizes and
postures. The negative images were generated through random cropping from the background. The
testing data contains 5045 images of the same size of 640 × 480, including pedestrians with various
activities under different weather conditions, such as walking down the sidewalk or crossing the road
in hot summer as well as in cold winter.

The CVC-09 FIR sequence pedestrian dataset was collected using a FIR camera mounted on a
car roof during summer days. This dataset is more challenging since it comprises pedestrians with
varying moving speeds, a variety of motions, all types of poses, changeable thermal energy, and partial
or full occlusions at night. The CVC-09 contains 5309 positive images and 2115 negative images for
training, 5763 images for testing, with the same size of 640 × 480.

For both KMU and CVC-09 datasets, the pedestrian images of different scales are combined for
training. The experiments are performed on a standard computer under Ubuntu 14.04 with a core
i7-6850k 3.6 GHz central processing unit (CPU) and 64 GB random-access memory. For the graphics
processing unit (GPU), we used three NVIDIA Titan X for training and a single Nvidia Titan X for
testing. Our codes are built on Caffe which requires a compute unified device architecture (CUDA)
and CUDA deep neural network library (cuDNN).

4.2. Evaluation Metric

We validate the detection performance by employing precision-recall curves, which are generally
applied to the evaluation of human detection performance. To verify the detection results, the predicted
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bounding boxes generated by the detector are compared with the ground-truth bounding boxes and
checked as either true positive (TP), false positive (FP), or false negative (FN), via measuring the
overlap between the bounding boxes. TP indicates the quantity of properly detected pedestrians, FP
indicates the number of mistakenly detected pedestrians by the detector, and FN indicates the number
of pedestrians that are not detected by the detector. As the detection criteria, the detected bounding
box is considered to be TP if the overlap ratio between the detected bounding box and the ground-truth
bounding box exceeds 50%. TP/(TP + FP) calculates the precision and TP/(TP + FN) computes the
recall. The average precision (AP) describes the tendency of the precision-recall curve and is calculated
by averaging the precision at several evenly spaced recall levels via changing the threshold of the
detection scores. In our experiments, the AP is obtained by averaging the precision values at 11 evenly
spaced recall levels between 0 and 1.

4.3. Comparison of the Detection Performance on the Keimyung University (KMU) Dataset

We compare the performance of AED-CNN with a set of five well-known methods, including
histogram-of-oriented-gradients (HOG) + support vector machine (SVM) [44], Hotspot + SVM [23],
OCS-LBP + CaRF [21], YOLOv2 [20], and YOLOv2 + ABMS [30].

As shown in Figure 5, our AED-CNN clearly shows the best performance when compared to
other methods and achieves the highest AP of 97.5%, which significantly exceeds the two recent
optimal results, YOLOv2 + ABMS [30] by 17%, and OCS-LBP + CaRF [21] by 5.1%, respectively.
HOG + SVM [44] shows the worst results because the HOG feature is not suitable to characterize
pedestrians in IR images. Although the hotspot regions of pedestrians can be detected in IR images,
Hotspot + SVM [23] is still ineffective when the temperature of pedestrians is similar to the background,
for example during a summer night. With the same limitations as Hotspot + SVM, OCS-LBP +

RF [21] and YOLOv2 [20] showed worse performance than ours. ABMS is proposed by YOLOv2 +

ABMS [30] to pre-process the IR images for enhancing pedestrians during hot weather. However,
the YOLOv2 network cannot detect small-sized pedestrians in low-resolution IR images. These
comparative results prove that our AED-CNN shows superior robustness compared to other methods
under various circumstances.
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Figure 6 presents some detection results on the KMU test set using our method. It is clear that our
method successfully detects pedestrians with various scale instances during a hot summer night. From
this observation, we can conclude that our method is effective at detecting pedestrians in IR images
and is robust under different weather conditions.Appl. Sci. 2020, 10, 809 11 of 18 
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Figure 6. Some detection results on the KMU test dataset. The green bounding boxes denote the ground
truth, and the red bounding boxes show the detection results. (a–d) are visualization of detection
results on the image set selected from the dataset.

4.4. Comparison of the Detection Performance on the CVC-09 Dataset

The detection performance is also evaluated by using the CVC-09 dataset. The precision-recall
curves of the proposed AED-CNN and other well-known approaches are shown in Figure 7. A similar
tendency can be observed in the results using the KMU dataset: the AP gap is quite large, 87.68% of
ours versus 63.9% of the state-of-the-art OCS-LBP + CaRF [21]. Figure 7 reveals that our approach
significantly outperforms all other approaches. The results are meaningful because the CVC09 dataset
includes numerous pedestrian images with thermal energy levels similar to the background levels.
Furthermore, the resolution is low, and some images are occluded. The performance comparison in
Figure 7 demonstrates that our AED-CNN is obviously better than other state-of-the-art methods in
detecting pedestrians.

Example detection results of our method on the CVC09 test set are displayed in Figure 8. In
Figure 8a,b, AED-CNN can detect all the pedestrians. Figure 8c shows that a heavily occluded
pedestrian was missed. In Figure 8d, three heavily occluded pedestrians were missed. From these
observations, we think that it is necessary to improve the performance of AED-CNN to detect
pedestrians with heavy occlusions in the future, even though AED-CNN shows the best performance
when compared with other state-of-the-art methods.
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4.5. Comparison of the Computational Speed

The computational speed and AP of the proposed AED-CNN with other reported methods are
compared in Table 1. We measure the running times of all the methods using the same machine.
Although YOLOv2 [20] and YOLOv2 + ABMS [30] have the fastest computational speed (0.02 s/f), their
precision is worse than our approach (over 10%). The computational speed of our method is 0.03s per
image, which is very competitive compared to other approaches.

Table 1. Comparison of the computation times and average precisions (APs) for the Keimyung
University (KMU) and Computer Vision Center (CVC)09 test sets.

Methods
KMU Test Set CVC09 Test Set

Speed (s/f) Precision Speed (s/f) Precision

Histogram-of-oriented-gradients (HOG) + Support vector
machine (SVM) [44] 0.09 8.7% 0.09 12.3%

Hotspot + SVM [23] 0.08 10.8% 0.08 9.1%
Oriented center-symmetric local binary (OCS-LBP) + Cascade

random forest (CaRF) [21] 0.06 92.4% 0.06 63.9%

You only look once version 2 (YOLOv2) [20] 0.02 66.5% 0.02 47.1%
YOLOv2 + Adaptive Boolean-map-based saliency (ABMS) [30] 0.02 80.5% 0.02 58.5%

Attention-guided encoder-decoder convolutional neural network
(AED-CNN) (ours) 0.03 97.5% 0.03 87.68%

4.6. Ablation Experiments

The ablation experiments are typically used to remove the main proposed components of the
developed method gradually to evaluate the effectiveness of each component on detection performance.
To verify the effectiveness of the encoder-decoder module and attention module, ablation experiments
have been done using the KMU dataset. The initial simulation is the original SSD [16], which is the
baseline detector. Then the decoder module is added to make an improved version, which is the
encoder-decoder module. Finally, the attention module is added to form our AED-CNN. The average
precision value of each module is given in Table 2. The baseline detector SSD [16] achieved 92.04% AP,
while the encoder-decoder module and attention module have significantly improved the detection
accuracies, of 95.36% and 97.50%, respectively.

Table 2. Results of the ablation experiments on KMU test set.

Methods Average Precision on KMU Test Set

Single shot multibox detector (SSD) [16] 92.04%
Encoder-decoder module 95.36%

Encoder-decoder module + attention module (AED-CNN) 97.50%

4.6.1. Evaluation of the Encoder-Decoder Module

As shown in Table 2, the encoder-decoder module significantly outperforms the original SSD [16],
by improving the AP by 3.32%. The SSD [16] built the pyramid starting from high up in the network
without using low-level feature maps. However, the low-level feature maps contain high spatial
resolutions and rich detailed features, which is essential for pedestrian detection in low-resolution
IR images. Our method proposed a new decoder module to effectively combine the high-resolution
low-level detailed features with the low-resolution high-level semantic features, which can increase
context information that helps to boost the pedestrian detection rate in low-resolution IR images.
Figure 9a,b illustrate visual comparisons of the original SSD detection results versus the encoder-decoder
detection results. It is clear that the SSD produces more false positives and false negatives.
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encoder-decoder + attention (AED-CNN).

4.6.2. Evaluation of the Attention Module

By incorporating our proposed attention module with the encoder-decoder module, the detection
AP is further improved by 2.14%, from 95.36% to 97.05%, as shown in Table 2. This comparison
demonstrates that the proposed attention module is useful to detect pedestrians in IR images with
changeable thermal energy by highlighting pedestrian regions while reducing background interference.
The visual comparison of the encoder-decoder detection results and those of the AED-CNN detection
is provided in Figure 9b,c. One can see that the encoder-decoder module without the attention
module fails to detect pedestrians, when the brightness values of pedestrians are close to those of the
background. However, the AED-CNN is able to successfully detect all pedestrians in these examples
even when the thermal energy difference between pedestrians and background is indistinguishable.

4.7. Discussion

The objective of this research is to solve two main challenges of IR pedestrian detection. One
is that IR images have some adverse properties, such as a noisy nature and low-resolution. The
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other is that IR images are susceptible to weather. To overcome these two problems, we propose an
attention-guided encoder-decoder convolutional neural network. Motivated by the recent success of
CNNs in object detection, we design a novel encoder-decoder module based on the well-known SSD
approach [16]. The proposed encoder-decoder module learns effective features from low-resolution IR
images. Inspired by the attention mechanism applied in CNN [39], we further propose an attention
module to highlight IR pedestrians even when thermal energy is indistinguishable between pedestrians
and the background.

4.7.1. Explanation of Results

Empirical experiments described in Section 4.6 well validate the effectiveness of the proposed
encoder-decoder and attention modules. Each of these modules in AED-CNN can bring a significant
improvement in the detection accuracy. In Sections 4.3 and 4.4, we compare our method with several
published state-of-the-art methods, on two challenging datasets. From the experimental results, we
found our proposed CNN-based architecture significantly outperforms hand-crafted methods. The
proposed method outperforms the hand-crafted method by 5.1% and 23.78% in AP on the KMU and
CVC-09 pedestrian dataset, respectively. This result inspires us to explore in depth how to develop
more effective CNN architectures to further improve the performance of IR pedestrian detection. As
far as I know, there are only few research works which apply CNN to IR pedestrian detection.

Another research direction we can further explore is how to improve the confidence score of
detected pedestrians in adverse environments. One can compare the result visualization of Figures 6
and 8, to easily find that the confidence score in Figure 8 is lower. The confidence score of some
detected pedestrians in Figure 8b,d are about 0.7. The reason is that the difference in brightness
between pedestrians and the background in the CVC-09 data is lower than the KMU data. It is
necessary to explore how to further emphasize pedestrian regions. Some recent works apply CNN for
saliency detection in images [45], which shows promising results. Saliency detection aims to learn the
significant difference between different groups. Saliency detection helps to reduce the complicity of the
background and detect the foreground objects. For the task of IR pedestrian detection, the pedestrian
and background are two groups, we can apply saliency detection algorithms to learn specific features
to find pixels that belong to saliency regions (pedestrian regions) [45]. Therefore, how to incorporate
saliency detection into IR pedestrian detection can be a future research problem.

4.7.2. Limitation of the Proposed Method

Despite having achieved state-of-the-art detection accuracy and real-time detection speed, our
approach does not perform well in some cases, as shown in Figure 10. The failure cases are caused by
occlusions. In Figure 10a, one person occluded by a tree is not detected. In Figure 10b, one person in
crowed is not detected. In Figure 10c, a false detection is generated among the crowd. Thus, occlusions
may degrade detection performance, which is a common limitation with any methods.

It is necessary to solve the challenges of detecting occluded pedestrians. This common problem
has already been explored [46,47]. We can regard pedestrians as a combination of different body
parts. For each body part, CNN learns features and generate a score, respectively. If the body part is
occluded, the score will be lower, otherwise, the score will be higher. During training, the features of
each body part will be integrated. The integrated feature will be used for pedestrian classification and
localization. The issues to solve in future are how many parts of a body should be used and how to
effectively integrate the features of each body part, with low resolution IR images. In addition, we
can take advantage of supervised learning to optimize the occlusion problem from the loss function
perspective. We can consider designing the loss function to force proposals away from the second
largest ground-truth bounding boxes that overlap with it. The objective is to make the proposal close to
real objects and away from the false objects, thereby reducing the false detection rate due to occlusions.
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5. Conclusions

In this paper, an effective attention-guided encoder-decoder convolutional neural network
(AED-CNN) is developed for pedestrian detection at night using IR images with various road scenes
and weather conditions. The encoder-decoder module is used for generating multi-scale feature maps,
in which the skip-connection block is proposed to combine the features from the encoder and decoder
layers. This combination increases context information that is helpful to extract discriminative features
even in low-resolution and noisy IR images. Furthermore, an attention module is devised to highlight
pedestrians while eliminating background interference, which is effective to detect pedestrians even
when the differences in thermal energy between pedestrians and background is poorly distinguishable.

Experimental results on the two widely used datasets fully verify that our method significantly
outperforms other state-of-the-art approaches. The proposed method achieves 97.50% AP on the
well-known KMU pedestrian dataset, which is 5.1% better in detection accuracy and two times faster
in detection speed than the published state-of-the-art method. Furthermore, our method achieves an
AP of 87.68% which is a 23.78% improvement over the previous best performance on the challenging
CVC-09 pedestrian dataset. Moreover, our AED-CNN achieves a real-time detection speed of about
0.03 s/f. In future works, solutions to detect occluded IR pedestrians will be explored.
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