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Recent research has demonstrated that effective fusion of multispectral images (visible and thermal images) enables
robust pedestrian detection under various illumination conditions (e.g., daytime and nighttime). However, there
are some open problems such as poor performance in small-sized pedestrian detection and high computational
cost of multispectral information fusion. This paper proposes a multilayer fused deconvolutional single-shot
detector that contains a two-stream convolutional module (TCM) and a multilayer fused deconvolutional module
(MFDM). The TCM is used to extract convolutional features from multispectral input images. Then fusion blocks
are incorporated into the MFDM to combine high-level features with rich semantic information and low-level
features with detailed information to generate features with strong a representational power for small pedestrian
instances. In addition, we fuse multispectral information at multiple deconvolutional layers in the MFDM via
fusion blocks. This multilayer fusion strategy adaptively makes the most use of visible and thermal information.
In addition, using fusion blocks for multilayer fusion can reduce the extra computational cost and redundant
parameters. Empirical experiments show that the proposed approach achieves an 81.82% average precision (AP)
on a new small-sized multispectral pedestrian dataset. The proposed method achieves the best performance on
two well-known public multispectral datasets. On the KAIST multispectral pedestrian benchmark, for example,
our method achieves a 97.36% AP and a 20 fps detection speed, which outperforms the state-of-the-art published
method by 6.82% in AP and is three times faster in its detection speed. ©2020Optical Society of America

https://doi.org/10.1364/JOSAA.386410

1. INTRODUCTION

Accurate pedestrian detection has attracted attention from
researchers in the computer vision and image processing fields.
The objective of pedestrian detection is to accurately locate
the position of pedestrians from images captured in various
real-world surveillance situations. Pedestrian detection provides
important functions to boost many humancentric applications,
such as intelligent robots, video monitoring, and intelligent
transportation systems [1–3].

Although many studies in this area have been conducted in
the past decade [4–20], most only consider detecting pedestri-
ans at daytime using visible cameras. However, a visible camera
relies on the lighting conditions of the surrounding environ-
ment, since it is ineffective under circumstances with poor
illumination (i.e., nighttime). For safety and better driving, it is
important to also achieve robust, reliable pedestrian detection at
nighttime. To overcome the aforementioned limitations, mul-
tispectral detectors employing a fusion of thermal and visible
images have been developed [21–29]. The pedestrians can be

enhanced by thermal images from a visual spectrum background
in an environment with poor illumination, which provides
complementary information about the regions of interest. This
approach facilitates the building of more robust pedestrian
detectors in a variety of lighting conditions.

Most existing multispectral pedestrian detectors are built
using a two-stage approach, like Faster R-CNN [30] and
VGG16 [31]. Faster R-CNN is adopted as the main structure
for anchor boxes and proposal-driven mechanisms. VGG16
[31] is used to extract features. Although satisfactory perform-
ance has been achieved on reasonable scale pedestrians using
existing methods, the accuracy decreases significantly when
applied to small-sized pedestrian detection because it is chal-
lenging to use anchor boxes to generate positive samples for
small-sized pedestrians. In addition, there is another factor
that makes it difficult for small-sized pedestrian detection.
The spatial resolution of the feature map gradually decreases as
the number of convolution layers increases. On the one hand,
the low-level feature layers contain high spatial resolution but
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lack semantic information, which is not conducive for small
instance detection. On the other hand, the high-level feature
layers have rich semantic information but low spatial resolution,
which also result in detectors ignoring small-sized pedestri-
ans. Furthermore, existing fusion strategies for integrating the
multispectral information vary between early fusion, halfway
fusion, or late fusion, depending on the fusion position in region
proposal network (RPN) and the combination of the three types
of fusion methods above. These fusion strategies are all based on
two-stage approaches resulting in high computational costs and
redundant parameters due to complex architectures for fusing
visible and thermal subnetworks.

To solve the problems mentioned above, we developed what
we believe is a novel multilayer fused deconvolutional single-
shot detector (MFDSSD) for effective multispectral pedestrian
detection, which consists of a two-stream convolutional mod-
ule (TCM) and a multilayer fused deconvolutional module
(MFDM). Different from two-stage detectors, one-stage detec-
tors such as a single-shot detector (SSD) [32] and you only look
once (YOLO) [33] eliminate the procedures of region proposal
generation and feature resampling. The one-stage detectors
encapsulate all operations in a single network, which signifi-
cantly outperforms the two-stage detectors in detection speed.
Considering the requirement for accurate real-time detection of
practical applications, we propose a one-stage detector to detect
pedestrians. Our method takes a pair of aligned visible and
thermal images as the inputs to the TCM and adopts MFDM
to enhance feature representation for small-sized pedestri-
ans and to effectively fuse the multispectral information for
pedestrian detection in various illumination conditions. We
believe that the MFDSSD achieves noticeable improvement,
accurately detecting small-sized pedestrians even when the
input images are low resolution. It is also worth mentioning
that our approach can process 20 frames per second (fps) on a
single NVIDIA GeForce Titan X GPU, which almost meets the
real-time requirement for autonomous driving applications.
The contributions of this work are listed below.

1. We propose what we believe is a novel one-stage fusion
network to fuse visible and thermal images for multispectral
pedestrian detection, which can accurately detect pedestri-
ans in real-time. Existing fusion networks for multispectral
pedestrian detection are two-stage methods that suffer
from the problem of high computational time and are
inapplicable to real applications. The proposed network is
composed of a two-stream convolutional module (TCM)
and a multilayer fused deconvolutional module (MFDM).
The TCM is used to extract convolutional features of input
visible and thermal images. The MFDM is added after the
TCM to improve the detection performance on small-sized
pedestrians and fuse the multispectral information.

2. A multilayer fused deconvolutional module (MFDM)
is proposed to effectively integrate the rich semantic fea-
tures in high-level and high-resolution detailed features
in low-level, which can enhance the feature maps with
more detailed and semantically strong information for
small-sized pedestrians.

3. We design a new fusion block that is incorporated into
multiple deconvolutional layers in the MFDM. The pro-
posed fusion block adaptively fuses the complementary
characteristics of visible and thermal images without
increasing the number of parameters and computation
time. Most existing fusion methods adopted addition or
concatenation operations, which are not adaptive and likely
to lose important information.

4. We generated a new challenging multispectral pedestrian
dataset with small-sized pedestrian instances to demon-
strate the robustness of our method. The experimental
results reveal that the average precision (AP) on the new
multispectral pedestrian dataset is 81.82%. In addition,
our method achieves the best detection performance on
the well-known KAIST multispectral pedestrian detection
benchmark dataset [21] and UTokyo multispectral dataset
[39]. With the KAIST multispectral pedestrian bench-
mark dataset [21], the performance of our method in AP
exceeds that of the state-of-the-art published method [29]
by 6.82%. Furthermore, our method’s detection speed is
three times faster. This shows that our method significantly
outperforms both in performance and speed.

The remaining part of this paper has four sections. Section 2
briefly introduces the previous related works. Section 3 explains
our proposed MFDSSD in detail. Section 4 presents the exper-
imental results and analysis. Finally, Section 5 summarizes our
work and describes future work.

2. RELATED WORK

A. Pedestrian Detection Using Visible Images

Over the past decades, a large number of approaches have been
proposed to improve the performance of pedestrian detection
from visible images. Triggs et al. [4] designed a histogram of
oriented gradient (HOG) features to describe pedestrians and
applied a support vector machine (SVM) for classification.
Dollar et al. [5] extended the HOG features to integral channel
features (ICF) by infusing LUV color channels. On the basis
of ICF, aggregated channel features (ACFs) [6] were developed
by adding gradient magnitude channel features, in which the
computational time can be reduced by reducing the number of
channels. With the rapid development of CNN-based methods,
the performance of pedestrian detection has been improved
to a new stage. Yang et al. [7] introduced the convolutional
channel features combined with a forest classifier for training
a pedestrian detector. Tian et al. [8] proposed using multiple
parts of a human body to train detectors, which was helpful to
overcome the heavy occlusion problem. In [10], the different
complexities of the features were considered, and a cascade
learning method based on handcrafted and CNN features was
presented to optimize detection accuracy. In [11] an RPN was
adopted to produce pedestrian candidates, which was then
classified by the boosted forest (BF). In [12], two subnetworks
designed for large-scale pedestrians and small-scale pedestrians
were trained simultaneously, which aims at alleviating the prob-
lem that detection accuracy decreases due to the large variance
of pedestrian scales. In [9,13–15], semantic and detection tasks
were jointly learned to enhance the feature discriminability of
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pedestrians. To accurately detect dense pedestrians with occlu-
sion, Wang et al. [16] and Zhang et al. [17] formulated two new
loss functions for regression. Although the above-mentioned
two-stage methods achieve satisfying accuracy, the computation
time is high. On the contrary, one-stage detectors perform better
in speed and show competitive accuracy. Liu et al. [18] designed
an asymptotic localization fitting module to refine the anchor
boxes in several steps that gradually improve detection results.
Lin et al. [19] incorporated fine-grained features into CNN
and proposed an attention strategy to identify pedestrians. Most
recently, CSP [20] introduced an anchor-free algorithm through
convolution to look for the central points and the central scale to
detect pedestrians.

B. Pedestrian Detection Using Multispectral Images

Existing research works have proved that multispectral pedes-
trian detectors trained by visible and thermal images are more
robust than detectors trained by visible images alone. In [21],
ACF+T+THOG features, which is a combination of ACF
from visible images, intensity channel features T from ther-
mal images, and THOG features from thermal images, were
designed to train the AdaBoost classifier for multispectral pedes-
trian detection. Wagner et al. [22] first applied the CNN to
detect multispectral pedestrians. They presented two fusion
strategies–early-fusion and late-fusion–that were decided by
the fusion position in CNNs. FRCNN Halfway Fusion [23]
was then proposed that integrated two-stream CNNs on the
middle-level of FRCNN, which achieved better results. Based
on FRCNN Halfway Fusion, Fusion RPN+ BDT [24] used
a boosted decision tree (BDT) for classification instead of the
original downstream classifier in FRCNN. Chen et al. [25]
proposed a multilayer fusion RPN in which a summation
fusion strategy is introduced. Guan et al. [26] and Li et al.
[27] presented adaptive weighting mechanisms to fuse the
multispectral images more efficiently. In [28], a semantic seg-
mentation task was infused into a multispectral fusion network
to assist the pedestrian detection task. MSDS–RCNN [29]

further improved the detection performance by adding an
additional subnetwork to handle hard negatives. Although the
above-mentioned studies have facilitated the development of
multispectral pedestrian detection, the detection performance
on small-sized pedestrians is poor, and the detection speed
is slow. Therefore, it is necessary to develop more effective
techniques to detect small-scale pedestrians by boosting the
performance of multispectral pedestrian detection.

In this research, a new MFDSSD is developed, in which
the deconvolutional module is infused to enhance the feature
representation of small-sized pedestrians. It can overcome the
problem of the shrinking resolution of feature maps and predict
accurate locations of pedestrians at various scales, since the
information related to small objects is retained, even in deep
layers. In addition, multispectral information is effectively
fused in multiple layers through fusion blocks. It can support
pedestrian detection in various lighting conditions. As a result,
we believe the proposed MFDSSD achieves satisfactory detec-
tion performance on small-sized pedestrians and outperforms
well-known existing approaches.

3. PROPOSED MFDSSD MODEL

This section describes our method for multispectral pedes-
trian detection in detail. Figure 1 presents an overview of our
MFDSSD framework, which consists of a two-stream convolu-
tional module (TCM) and a multilayer fused deconvolutional
module (MFDM). The input visible and thermal images are
first processed by the TCM to generate a series of progres-
sively smaller convolutional layers. Then, the Conv7-V and
Conv7-T layers generated by TCM are integrated via a sum-
mation operation to produce the fused Conv7 layer. Based on
the fused Conv7 layer, the MFDM produces a sequence of
deconvolutional layers with a gradually increasing resolution
that is combined with corresponding feature maps from the
TCM through fusion blocks. Finally, the generated feature
maps in MFDM are fed to the prediction stage for pedestrian
classification and bounding box regression.

Fig. 1. Architecture of the proposed MFDSSD model.
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A. Two-Stream Convolutional Module

The TCM aims to extract a series of progressively smaller con-
volution layers from the input visible and thermal images. As
shown in Fig. 1, the TCM is built on top of two of the same
backbone networks (a feedforward convolutional network) to
extract convolutional features on a pair of pixel-aligned thermal
and visible images. We choose VGG16 [31] as the backbone
network because it performs well at classification and has a fast
processing speed. However, a standard VGG16 cannot widely
cover the scale range of pedestrians because its limited depth
results in weak semantic information in feature maps. Despite
these feature layers containing high spatial resolutions, it is
still difficult to detect small pedestrian instances accurately.
Therefore, we add two groups of additional convolutional layers
(Conv6-V/Conv7-V and Conv6-T/Conv7-T) to the end of the
truncated two-stream VGG-16 to increase semantic informa-
tion at a high-level, which is conducive to detect multiscaled
pedestrians, as proven in [34]. Thus, each feature extraction
stream contains seven convolution and pooling layers (Conv1-V
to Conv7-V from the visible stream and Conv1-T to Conv7-T
from the thermal stream).

B. Multilayer Fused Deconvolutional Module

The MFDM has two functions: (1) to generate features with
strong representational power for small pedestrian instances by
integrating high-level features with rich semantic information
and the low-level features with detailed information; and (2) to
effectively fuse visible and infrared information from the TCM
without increasing the computational time too much.

In the TCM, the low-level feature maps contain high spatial
resolutions but lack semantic information. On the contrary, the
high-level feature maps have rich semantic information but low
spatial resolutions. Therefore, it is difficult to apply the feature
layers of TCM to detect small objects. Fu et al. [35] introduced
a deconvolutional network to overcome the shortcomings of
the traditional downsampled convolutional network, which
equalizes the represent ability of each layer and make the net-
work more informative. Therefore, to enhance features for small
pedestrian detection, we propose to add extra deconvolution
layers to combine the complementary properties from the
high-level and low-level features. We build the deconvolutional
module at the end of the TCM module. As shown in Fig. 1, the
MFDM starts from the fused Conv7 layer, which is generated
via summation of the Conv7-V and Conv7-T layers. From
that, a set of upsampled deconvolutional layers with gradually
increasing resolution are generated. While five deconvolutional
layers are used in [35], there are four layers used in our MFDM
to save computation time.

C. Fusion Block

To bring rich context information as well as to effectively fuse
multispectral information, a new fusion block is proposed to
combine the feature layers in the MFDM and the corresponding
feature layers in the TCM. There are three fusion blocks at
different depths in Fig. 1. We take the first fusion block as an
example here. Figure 2 shows an illustration for the fusion block.
We apply (3× 3 Conv, ReLU, and 3× 3 Conv) on Conv6-V

Fig. 2. Fusion block. Conv6-V (C6V ), Conv6-T (C6T ), and Fused
Conv7 (F uC7) denote input visible, thermal, and fused features,
respectively. Fused Deconv1 (F uDec1) denotes the fused output
from the fusion block. c© denotes concatenation, and ⊕ denotes
element-wise summation.

and Conv6-T separately and denote the outputs as FV and FT .
The concatenation of the Conv6-V and Conv6-T is passed to a
1× 1 Conv to generate the joint feature output FC . FD denotes
the output of deconvolution on the Fused Conv7. We then
perform an element-wise summation on FV , FT , FC , and FD.
Finally, a block (ReLU, 3× 3 convolution, ReLU) is applied to
process the summed layer, which can help extract discernable
features, as suggested by Zhang et al. [34]. The operations of the
fusion block are summarized in

FV = (ReLU (C6V∗wV 1 + bV 1)) ∗wV 2 + bV 2

FT = (ReLU (C6T*wT1 + bT1)) ∗wT2 + bT2

FC = (C6V �C6T) ∗wC + bC

FD = F uC7 ∗wDe + bDe

F uDec1= ReLU (FV ⊕ FT ⊕ FC ⊕ FD) ∗w+ b) (1)

where
� concatenation;
⊕: element-wise summation;
C6V ,C6T , FV , FT , FC , FD, F uC7, F uDec1: feature maps;
wV 1, wV 2, wV , wT1, wT2, wC , wDe, w: kernel weights; and
bV 1, bV 2, bV , bT1, bT2, bC , bDe, b: kernel bias.

D. Training

1. Matching andHardNegativeMining

During training, we match the anchor box A to the ground truth
box B using the Jaccard overlap, which is defined by

J (A, B)=
area(A ∩ B)
area(A ∪ B)

. (2)

First, the anchor box with the highest J (A, B) is matched
to each ground truth. Then the rest of anchor boxes will be
matched to any ground truth box if J (A, B) exceeds 0.5. It is
a conductive matching strategy to handle multiple predicted
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bounding boxes with high scores while detecting overlapped
pedestrians.

There are a majority of nonmatching anchor boxes after
matching. The nonmatching anchor boxes that have the highest
loss value will be selected as the negative samples to make the
ratio between the positive and negative samples1:3.

2. Loss Function

The overall loss function of our method is shown in

L({xi }, {ti }, {pi }, {bi })= L1({xi }, {ti })+ L2({pi }, {bi }),

(3)
which includes two parts (i.e., the loss of ATM and the loss of
MFDM), which are denoted by L1 and L2, respectively. Each
part is a weighted summation of the two branches; one is the
confidence loss (conf ) of SoftMax classifier, and the other is
the localization loss (loc) of the bounding box regression, as
shown in

L1({xi }, {ti })=
1

N1
((L conf1(xi , x ∗i ))+ λL loc1(ti , t∗i )), (4)

L2({pi }, {bi })=
1

N2
((L conf2(pi , p∗i ))+ λL loc2(bi , b∗i )),

(5)
where x ∗i /p∗i and t∗i /b

∗

i denote the ground truth label and
location of an anchor i in a mini batch, respectively; xi/pi

expresses the probability value that the anchor i is a pedestrian;
ti/bi indicates the predicted location value of the anchor i I ;
and N1 and N2 note the number of positive anchors in the ATM
and MFDM, respectively. Notably, if N1/N2 = 0, the loss is
L1/L2 = 0 and λ is set to 1 through cross validation. The confi-
dence loss Lconf1/Lconf2 is the cross-entropy loss over pedestrian
class and nonpedestrian class. The localization loss is formulated
by smooth L1 loss as in Fast R-CNN [36], and the smooth L1
loss is adopted as our regression loss Lloc, where smoothL1 is
defined as

L loc
(
ti , t∗i

)
=

∑
j∈{x ,y ,w,h}

smoothL1(t j , t∗j ). (6)

3. Optimization

The VGG-16 [31] pre-trained on the ILSVRC dataset [37] is
adopted as the backbone network in the proposed MFDSSD.
The parameters of the additional layers of the MFDSSD are ini-
tialized by the “Xavier” approach [38]. We set the batch size to
5 for training. Then, we use stochastic gradient descent (SGD)
with a momentum 0.9 and a weight decay 5× 10−4 to fine-tune
the entire network. We adopt a multiple learning rate training
strategy to avoid gradient explosion. Specifically, 1× 104 iter-
ations are first running with a learning rate of 5× 10−5. Then,
the next 7× 104 iterations are running with a learning rate of
1× 10−3. After finishing 7× 104 iterations, the learning rate is
reduced by a factor of 10 after every 2× 104 iterations. The total
number of learning iterations is 1.2× 105. The decreasing trend
of the SoftMax loss through iteration times is shown in Fig. 3.
We used the KAIST dataset as an example here.

Fig. 3. Loss reduction with the number of iterations.

4. EXPERIMENTAL RESULTS

A. Datasets and Processing Platform

1. ProposedMultispectral PedestrianDataset

To validate the performance of the proposed approach, we built
a challenging dataset for small-sized multispectral pedestrian
detection, named Hanyang and Huins (HH). The multispectral
pedestrian dataset contains pedestrian images with heights of
50 pixels or below, as shown in Fig. 4. The HH dataset consists
of pixel-level aligned VI and IR images with ground truth labels.
The pictures were taken using RGB and FIR dual cameras
mounted on drones. In total, we collected 7247 pairs of images
(each with a size of 720× 480 pixels), including pedestrians
with various sizes and postures, varying moving speeds, and
partial or full occlusions. We divided the whole dataset into
training and testing parts. The training part has 6247 pairs of
images, and the testing part contains 1000 pairs of images. The
ground truth contains bounding box coordinates and labels.

2. KAISTMultispectral PedestrianDataset

The KAIST dataset [21] was captured by a color camera and a
thermal camera mounted on a moving vehicle during the day

Fig. 4. Scale distribution of pedestrian heights from the HH
dataset.
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and night, which contains well-aligned visible and thermal
images with the same size of 640× 512 pixels. In particular,
the dataset includes pedestrians with various scales, a variety
of activities, and partial or heavy occlusions. In addition, it
contains images with adverse lighting conditions, such as over-
exposure, shadows, dark night, dawn, or dusk. The training
data contains 25086 pairs of visible and thermal images with
two-frame skips. The total amount of test data is 2252 pairs of
visible and thermal images with 20-frame skips, in which 1455
pairs were collected during the daytime, while 797 others were
collected during the nighttime.

3. UTokyoMultispectral Object DetectionDataset

The UTokyo dataset [39] was captured at 1 fps using visible, far
infrared, mid-infrared, and near-infrared cameras. It consists of
3740 group daytime images and 3772 group nighttime images.
The dataset contains 1446 groups of aligned color-thermal
images with five labeled classes (bike, car, car_stop, color_cone,
person) and with the same size of 320 × 256 pixels. In our
experiment, the 1446 groups of aligned color-thermal images
are used for comparison of pedestrian (person) detection.

B. Evaluation Metrics

1. Precision andRecall

The precision-recall curve is widely used to evaluate the per-
formance of object detectors. The overlap ratio between the
predicted bounding boxes and ground truth boxes is measured
to classify the detection results into three categories: true positive
(TP), false positive (FP), and false negative (FN). The number
of properly predicted pedestrians is denoted as TP. In general,
the predicted result is judged as TP if the overlap ratio between
the predicted bounding box and the ground truth is more than
0.5. The number of missing pedestrians is expressed by FN, and
the number of nonpedestrian regions detected as pedestrians
denoted as FP. Precision is defined as TP/(TP+ FP), and recall
is defined as TP/(TP+ FN). The AP is computed via averaging
several precision values at equally spaced recall levels by chang-
ing the threshold of the confidence scores. In this work, we had
AP values at 100, and evenly spaced recall levels between 0 and 1
to obtain the AP.

2. Log-AverageMissRate (MR)

We also use the log-average miss rate (MR) versus a false positive
per image (FPPI) range of [10−2, 100] to evaluate the detector
performance [40]. A minimum overlap ratio of 0.5 is adopted
to match the detected bounding box with the ground truth
bounding box.

3. MultipleObjectDetectionAccuracy andMultipleObject
DetectionPrecision

Multiple object detection accuracy (MODA) assesses the accu-
racy aspect of detector performance, which accounts for missed
detections and false positives, and multiple object detection pre-
cision (MODP) assesses the localization precision of the detec-
tor performance [41]. We report MODA and MODP for radius
r = 0.5 m, as suggested by Chavdarova et al. [42].

C. Detection Performance on the HH Dataset

This section evaluates the performance of our approach on the
new HH dataset. Because the HH dataset is our proposed new
benchmark, we only use our method for experiment. Fig. 5
shows the precision-recall curve and the MR-FPPI curve of our
proposed MFDSSD, which reveals that our approach performs
well when detecting small pedestrians, with an AP of 81.82%
and an MR of 37.50%. The results make sense because the HH
dataset contains plenty of far-scale pedestrians (those below
50 pixels in bounding-box height). Furthermore, some images
contain occluded pedestrian instances.

Figure 6 provides a visualization of the detection results of the
proposed method on the HH test set. We marked the range of
pedestrian heights, which are from 25 to 42 pixels. The pedestri-
ans with various scales are successfully detected by the proposed
method, which demonstrates that the proposed method detects
small-sized pedestrian instances well.

D. Detection Performance on the KAIST Dataset

In this section, the performance of MFDSSD is com-
pared with a set of six well-known approaches, including
ACF+T+THOG [21], FRCNN Halfway Fusion [23],
Fusion RPN+ BDT [24], MLF-CNN [25], IAF-RCNN [27],
and MSDS-RCNN [29]. Comparison results are examined
using the AP and log-average MR for pedestrian instances of
three cases: (a) reasonable case (i.e., more than 55 pixels in

Fig. 5. Detection result on the HH test set. (a) Precision versus recall; (b) miss rate versus FPPI.
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Fig. 6. Select detection results on the HH test set. The green bounding boxes denote the ground truth, and the red bounding boxes show the detec-
tion results.

height), (b) far-scale case (i.e., less than 55 pixels), and (c) overall
case, which is a combination of both. Figures 7(a) and 7(d),
respectively, present the precision-recall curves and MR-FPPI
curves of a reasonable case. Our method clearly shows better
performance than all other approaches and achieves the high-
est AP of 97.39%, which significantly outperforms the two
recent well-known results, MSDS-RCNN [29] by 6.76%, and
IAF-RCNN [27] by 10.17%. Our method achieves the low-
est MR of 7.09%, which is smaller by 4.35% than that of the
state-of-the-art method, MSDS-RCNN [29]. Furthermore,
for the far-scale case, our approach showed significant improve-
ment compared to the top competitive approach. Our method

achieves the highest AP of 64.44% and the lowest MR of
43.35%, where the next best method (MSDS-RCNN [29])
has an AP of 46.22% (18.22% worse) and an MR of 57.85%
(14.50% worse), as displayed in Figs. 7(b) and 7(e). Figs. 7(c)
and 7(f ) show the overall performance, so we can again observe
a similar tendency like the results of the far-scale case: Our
method evidently outperforms other methods. Since the major-
ity of the KAIST dataset are far-scale instances, the overall
detection accuracy can be improved by improving the small
pedestrian detection.

We also evaluated detectors on two subsets in terms of differ-
ent lighting conditions of the input images. The test sets were

Fig. 7. Comparison of detection results (precision versus recall and miss rate versus FPPI) on the KAIST test set, in terms of different scales. (a) and
(d) Reasonable scale (pedestrian height>= 55 pixels); (b)and (e) Far scale (pedestrian height< 55 pixels); and (c) and (f ) Overall.
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Fig. 8. Comparison of detection results (precision versus recall and miss rate versus FPPI) on the KAIST test set, in terms of daytime and night-
time. (a) and (c) Daytime. (b) and (d) Nighttime.

Table 1. Comparison of Detection Results on the
KAIST Test Set Using the MODA, MODP, Precision, and
Recall Metrics

Method
MODA

(%)
MODP

(%)
Precision

(%)
Recall
(%)

ACF+T+THOG [21] 23.15 49.24 64.21 52.30
FRCNN Halfway Fusion [23] 58.51 57.05 83.16 73.37
Fusion RPN+ BDT [24] 70.01 60.82 86.17 83.40
MLF-CNN [25] 67.86 64.45 86.47 80.45
IAF-RCNN [27] 71.92 69.81 87.22 84.27
MSDS-RCNN [29] 79.40 70.22 90.63 88.56
MFDSSD (ours) 90.42 71.84 97.39 92.91

divided into daytime and nighttime. As shown in Figs. 8(a)
and 8(c), for reasonable daytime, when compared with the
state-of-the-art approach, MSDS-RCNN [29], our method
outperforms by 6.12% in AP and 2.43% in MR. A similar tend-
ency can be observed for the reasonable nighttime subset: the
MSDS-RCNN [29] shows AP of 89.86% and MR of 13.83%,
while our method shows significantly enhanced AP of 98.49%
and reduced MR of 4.48%, as illustrated in Figs. 8(b) and 8(d).

The perfromance comparison of our approach with other
approaches in terms of the MODA and MODP is presented
in Table 1. As shown, our approach achieves significantly bet-
ter performance and significantly improves the results of the
MSDS-RCNN [29] method, from 79.40% to 90.42% in
MODA and from 70.22% to 71.84% in MODP.

Fig. 9 presents comparisons of the detection results on four
example images including challenging scenes at day and night,
which contains pedestrians in low-visibility and at various scales.

The visual comparisons evidently show that our method outper-
forms other state-of-the-art methods. The MSDS-RCNN [29],
MLF-CNN [25], and FRCNN Halfway Fusion [23] methods
produce many misses when the pedestrian size is too small or
the illumination conditions are poor, while the baseline method
ACF+T+THOG [21] generates many misses as well as false
alarms. However, our method successfully detects pedestrians
with various scales at day and night in all four examples. In
conclusion, our approach works effectively to detect pedestri-
ans at various scales and is robust under various illumination
conditions.

E. Detection Performance on the UTokyo Dataset

We further verify the performance of our proposed method by
using the UTokyo multispectral dataset. Fig. 10 displays the
precision-recall curves and MR-FPPI curves of the overall case.
Our method outperforms again the state-of-the-art method
MSDS-RCNN [14] by 3.75% in AP and by 3.59% in MR.

The perfromance comparison of our approach with other
approaches in terms of the MODA and MODP is presented in
Table 2, which shows that our approach consistently achieves
the best performance.

Figure 11 compares the detection results. Other methods
produce considerably more false alarms and missing instances
than our method. Because the UTokyo multispectral dataset
involves the presence of many small-sized pedestrians in dark
environments, this result demonstrate that our method works
effectively to detect the small-sized instances by fusing the
information of visible and thermal images.
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Fig. 9. Visual comparison of our detection results in the KAIST test set with other approaches. The five rows show detection results of MFDSSD
(ours) (see Visualization 1), MSDS-RCNN [29], MLF-RCNN [25], FRCNN Halfway Fusion [23], and ACF+T+THOG [21], respectively. The
green bounding boxes denote the ground truth. The red bounding boxes show the detection results.

Fig. 10. Comparison of detection results on the UTokyo test set. (a) Precision versus recall curves; (b) miss rate versus FPPI curves.

F. Comprehensive Comparison in Terms of Detection
Accuracy and Detection Speed

The computation time of the proposed method on 1000 HH
test images is given in Fig. 12(a), which shows an average
computation time of 0.05 s/f (20_fps). We also compare the
computation times between our approach and other approaches

on 2252 KAIST test images and 1446 UTokyo multispectral
test images, as displayed in Figs. 12(b) and 12(c). All methods
are tested on the same machine.

Table 3 gives a comprehensive comparison of the detection
accuracy and the average computation time of 2252 KAIST
test images. It is obvious that our method is faster than all other

https://doi.org/10.6084/m9.figshare.11413842
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Table 2. Comparison of Detection Results on the
UTokyo Test Set Using the MODA, MODP, Precision,
and Recall Metrics

Method
MODA

(%)
MODP

(%)
Precision

(%)
Recall
(%)

ACF+T+THOG [21] 4.77 46.91 53.15 40.23
FRCNN Halfway Fusion [23] 38.62 56.73 73.61 60.20
MLF-CNN [25] 59.26 64.55 84.66 72.37
MSDS-RCNN [29] 60.96 69.15 85.65 73.23
MFDSSD (ours) 67.71 70.94 89.40 76.82

methods, three times faster than the MSDS-RCNN method,
and two times faster than MLF-CNN method. Our method
outperforms all other methods in terms of detection accu-
racy under all evaluation conditions. Table 3 also compares
the number of parameters of each method. It is clear that our

method has far fewer parameters than other methods. For exam-
ple, the number of parameters of our method is less than one
tenth of that of the MSDS-RCNN. In summary, the proposed
MFDSSD achieves the most accurate detection accuracy and is
the fastest in detection speed. Furthermore, our method has the
least number of parameters.

G. Ablation Studies

To verify the effectiveness of our proposed MFDSSD, we con-
duct ablation studies using the KAIST dataset. For the first
simulation, we remove the multilayer fused deconvolutional
module (MFDM) to keep only the two-stream convolutional
module (TCM) for an experiment to see the performance.
Then, the MFDM model without the fusion blocks is added
to make an improved version. Specifically, we integrate high-
level and low-level features by a simple addition operation.
This simulation is to evaluate how the integration of high-level

Fig. 11. Visual comparison of our detection results in the UTokyo test set with other approaches. The green bounding boxes denote the ground
truth, illustrated in thermal images. The red bounding boxes show the detection results, displayed in visible images.

Fig. 12. Comparison of computation times. (a) HH test set; (b) KAIST test set; and (c) UTokyo test set.

Table 3. Comprehensive Comparison on KAIST Test Set

AP (%) in Terms of Different Scales
AP (%) in Terms of Different

Lighting Conditions
Average

Computation
Time (s/f )

Number of
Parameters

(Mb)Methods Reasonable Scale Far Scale Overall Daytime Nighttime

ACF+T+THOG [21] 64.21 14.87 38.78 68.91 54.86 0.13 —
FRCNN Halfway Fusion [23] 83.16 38.50 59.13 83.15 83.75 0.16 579.4
MLF-CNN [25] 86.47 33.84 57.22 90.48 77.52 0.10 312.8
MSDS-RCNN [29] 90.63 46.22 63.84 90.98 89.86 0.15 3481.6
MFDSSD (ours) 97.39 64.44 80.03 97.10 98.49 0.05 249.3
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Table 4. Results of the Ablation Experiments on
KAIST Reasonable Test Set

Models AP (%) MR (%)

TCM 80.42 26.82
TCM+MFDM without Fusion blocks 89.54 14.25
TCM+MFDM+ 1 Fusion block 92.35 11.70
TCM+MFDM+ 2 Fusion blocks 95.08 9.53
TCM+MFDM+ 3 Fusion blocks (MFDSSD) 97.39 7.09

and low-level features contribute to detection performance.
Finally, we gradually infuse fusion blocks into the MFDM to
replace simple addition to evaluate the effect of fusion blocks.
Table 4 shows the average precision and log-average MR for each
simulation.

1. Evaluation of the Integration ofHigh-Level and Low-Level
Features

As shown in Table 4, by adding the MFDM without fusion
blocks to TCM, the detection performance significantly
improved by 9.12% in AP and 12.57% in log-average MR.
This comparison demonstrates that the integration of low-level
and high-level features is effective to boost the detection per-
formance. The TCM consists of two branches of feedforward
convolution networks with a series of progressively smaller
convolutional layers. It is hard for TCM to classify small-sized
pedestrians. To overcome this issue, our method introduces the
multilayer deconvolutional module to integrate low-level layers
with high-resolution detailed features and high-level layers with
rich semantic features, which is helpful to boost the pedestrian
detection rate.

2. Evaluation of the FusionBlocks

In Table 4 shows a comparison of the performance for the use of
a diverse number of fusion blocks. One can observe that the per-
formance improves with an increasing number of fusion blocks.
The best performance is achieved when all three fusion blocks
are added to MFDM. This proves that the proposed fusion
block applied in multiple layers is effective to fuse information
from VI and IR features and significantly improve detection
performance. The addition operation to integrate the visible
and infrared information is widely used by existing multispectral
pedestrian detectors. However, the addition operation makes
VI and IR features contribute equally, ignoring that the VI
and IR images have different effects on pedestrian detection.
The proposed fusion block automatically learns the weights to
effectively integrate VI and IR features.

5. CONCLUSIONS AND FUTURE WORKS

We developed an effective approach that we call MFDSSD to
detect pedestrians during the day and night in multispectral
images. The MFDSSD consists of a TCM and a multilayer
fused deconvolutional module MFDM. The TCM extracts
the multispectral features from the input visible and thermal
images, while the MFDM fuses the multispectral information
and strengthens the feature representativity for small-sized

pedestrian instances. A novel fusion block is proposed to be
incorporated into MFDM, which is effective to integrate com-
bine the low-level features with high spatial resolution and
high-level features with rich semantic information to improve
the detection accuracy of small-sized pedestrians and effec-
tively fuse the multispectral information without increasing
the computational cost. Experimental results on the new HH
multispectral pedestrian dataset, KAIST multispectral pedes-
trian dataset, and UTokyo multispectral object detection dataset
fully verify that our method achieves state-of-the-art detection
accuracy with a fast computation speed, which is valuable in the
area of pedestrian detection. In future work, we plan to further
explore how to more effectively fuse multispectral information
and extend our detector to a tracker by using multiple frames of
video instead of a single image frame.
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